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Abstract

M.Sc Eng. Buğra TÜZEMEN

Spin-polarized impurities in ultracold Fermi gas

The many–body physics has witnessed continuous cooperation between the theory
and the experiment over the ages. The immense development in the theory of the clas-
sical gas during the 19th century has sparked such experiments that, in return, needed
further theory. In ultracold temperatures, a gas, either bosonic or fermionic, displays
a macroscopic quantum coherence that shows itself as superconductivity in charged
particles and as superfluidity in neutral particles. This new state of matter has been
studied thoroughly, both in theory and in experiments, during the 20th century. The
advancements paved the way to discover a plethora of exotic states of matter.

This study focuses on the theoretical discovery of a particular exotic configuration
in spin–imbalanced ultracold Fermi gas, dubbed as ferron. Although the phase di-
agram for spin–polarized ultracold Fermi gas is incomplete, it is possible to create
meta–stable excited states that harbor low polarization values. The ferron results from
the modulation of the pairing field in the presence of a chemical potential difference
between the spin components. This mechanism is essentially similar to the one behind
the Josephson–π junction in superconductor–ferromagnet–superconductor junctions
or the Fulde–Ferrel–Larkin–Ovchinnikov phase. Therefore, the enhanced stability of
the ferron and its inner structure and internal properties may shed light on this long–
sought phase which has not been experimentally observed yet.

The thesis includes a brief introduction to the polarized ultracold Fermi gas and
the BCS–BEC crossover with rough examples of the experimental techniques. The sec-
ond chapter revisits the BCS theory of superconductivity to establish insight into the
Bogoliubov–de Gennes (BdG) method, the Andreev states, and finite temperature be-
havior of the pairing field. In the next chapter, the technical framework in order to sim-
ulate many–body systems is presented. An extension of the density functional theory
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to the superfluid systems has been described. The framework called time–dependent
asymmetric superfluid local density approximation (TDASLDA) allows simulating the
spin–polarized unitary Fermi gas dynamics. It has been confirmed with numerous re-
sults over the years.

The second half of the thesis is dedicated to the ferron. In the fourth chapter, the
dynamic creation of the ferron is presented. The conditions to create the ferron and its
remarkable stability are studied and explained. Moreover, (even more) exotic config-
urations of the ferron, such as deformation and concentric ferrons along with ferron
collisions, are presented. The comparison between BdG and TDASLDA and between
the weak and strong coupling regimes are also part of Chapter 4.

In the fifth chapter, the ferron is studied internally in static, two–dimensional sys-
tems. The behavior of the Andreev states which constitute the ferron is presented. The
ferrons obtain a specific size in relation to the spin–imbalance it has. Also, it is shown
they can be obtained in finite temperatures well within experimental reach if the ob-
ject’s size is large enough. The dynamic properties of the ferron are addressed in the
sixth chapter. It has shown that each ferron is associated with a critical velocity beyond
which it can not be accelerated further and eventually destroyed. This critical velocity
is attributed to the size and the strength of the superfluid background. Furthermore,
ferron’s response to the superflow is studied in terms of its inertia. The studies show
that the effective mass depends trivially on the size of the ferron. However, an extra
contribution as a result of the strength of the superfluid background is also presented.
The final chapter includes a summary and future aspects.

Below, the list of scientific publications on which this thesis is based is presented:

• P. Magierski, B. Tüzemen, G. Wlazłowski, "Spin–polarized droplets in the unitary
fermi gas", Phys. Rev. A 100, 3 (2019).

• B. Tüzemen and P. Kukliński and P. Magierski and G. Wlazłowski, "Properties
of spin–polarized impurities - ferrons, in the unitary fermi gas", Acta Physica
Polonia B, vol 51 (2020).

• P. Magierski, B. Tüzemen, G. Wlazłowski, "Dynamics of spin–polarized impurity
in ultracold Fermi gas", Phys. Rev. A 104, 3 (2021).

Keywords: spin-polarized ultracold Fermi gas, FFLO phase, Andreev bound states, non-
equilibrium superfluidity



Streszczenie

M.Sc Eng. Buğra TÜZEMEN

Spinowo spolaryzowane domieszki w ultrazimnym gazie fermiego

Fizyka wielu ciał była świadkiem ciągłej współpracy na przestrzeni wieków
między teorią a eksperymentem. Ogromny rozwój teorii gazu klasycznego w XIX
wieku dał początek doświadczeniom, które z kolei wymagały dalszego rozwoju
teorii. W ultraniskich temperaturach gaz, bozonowy lub fermionowy, wykazuje
makroskopową spójność kwantową, która objawia się jako nadprzewodnictwo dla
cząstek naładowanych, a jako nadciekłość w przypadku cząstek neutralnych. Ten
nowy stan materii został dokładnie zbadany, zarówno teoretycznie, jak i eksperymen-
talnie, w XX wieku. Postępy w tej dziedzinie utorowały drogę do odkrycia mnóstwa
egzotycznych stanów materii.

Niniejsze badanie koncentruje się na teoretycznym odkryciu szczególnej egzoty-
cznej konfiguracji, określanej mianem ferronu, w niezrównoważonym spinowo ultra-
zimnym gazie Fermiego. Pomimo że diagram fazowy dla ultrazimnego gazu Fer-
miego z polaryzacją spinową jest niekompletny, możliwe jest stworzenie metastabil-
nych stanów wzbudzonych, charakteryzujących się niskimi wartościami polaryzacji.
Ferron powstaje w wyniku modulacji pola parowania, w obecności różnicy potenc-
jałów chemicznych między składowymi spinowymi. Mechanizm ten jest zasadniczo
podobny do tego, który stoi za złączem Josephsona–π w złączach nadprzewodnik–
ferromagnetyk-nadprzewodnik lub fazą Fulde–Ferrel–Larkin–Ovchinnikov. Dlatego
badania zwiększonej stabilności ferronu oraz jego wewnętrznej struktury oraz właści-
wości mogą rzucić światło na tę długo poszukiwaną fazę, której jeszcze nie zaobser-
wowano doświadczalnie.

Praca ta zawiera krótkie wprowadzenie do tematyki spolaryzowanego ultrazim-
nego gazu Fermiego i skrzyżowania (ang. crossover) BCS-BEC z zarysem technik
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eksperymentalnych. Drugi rozdział jest poświęcony teorii nadprzewodnictwa BCS,
która jest ważna do zrozumienia metody Bogoliubowa-de Gennesa (BdG), twierdzenia
Andreeva i zachowania pola parowania w skończonej temperaturze. W następ-
nym rozdziale przedstawiono ramy techniczne symulacji układów wielociałowych.
Opisano rozszerzenie teorii funkcjonału gęstości na układy nadciekłe. Model zwany
asymetrycznym, przybliżeniem nadciekłej gęstości lokalnej (ang. time–dependent
asymmetric superfluid local density approximation: TDASLDA) umożliwia symulację
dynamiki gazu Fermiego spolaryzowanego spinowo. Zostało to zweryfikowane w
licznych symulacjach na przestrzeni wielu lat.

Druga połowa pracy poświęcona jest ferronowi. W rozdziale czwartym przedstaw-
iono sposób dynamicznego wytwarzania ferronu. Zbadano i wyjaśniono warunki do
powstania ferronu oraz jego niezwykłą stabilność. Ponadto zaprezentowano (jeszcze
bardziej) egzotyczne konfiguracje ferronu, takie jak deformacje i koncentryczne fer-
rony oraz zderzenia ferronów. Rozdział czwarty zawiera także porównanie między
BdG i TDASLDA oraz między słabym oraz silnym reżimem sprzężenia w uładzie.

W rozdziale piątym ferron jest badany w statycznych, dwuwymiarowych
układach. Przedstawiono zachowanie stanów Andreeva, które tworzą ferron. Ferrony
uzyskują określoną wielkość w stosunku do występującej w układzie nierównowagi
spinowej. Wykazano również, że można je uzyskać w skończonych temperaturach,
które są w zasięgu eksperymentalnym, jeśli rozmiar obiektu jest wystarczająco duży.
W szóstym rozdziale omówiono dynamiczne właściwości ferronu. Okazuje się, że
istnieje prędkość krytyczna dla każdego ferronu, powyżej której nie może być on
przyspieszany, ponieważ będzie się to wiązać z jego zniszczeniem. Krytyczna pręd-
kość zależy od rozmiaru ferronu oraz amplitudy pola parowania. Ponadto badana
jest reakcja ferronu na superprzepływ pod kątem jego bezwładności. Z przeprowad-
zonych badań wynika, że masa efektywna zależy w prosty sposób od wielkości
ferronu. Przedstawiono jednak dodatkowy wkład pochodzący od amplitudy pola
parowania. Ostatni rozdział zawiera podsumowanie i przyszłe aspekty.

Poniżej przedstawiono wykaz publikacji naukowych, na których oparta jest ta
rozprawa:

• P. Magierski, B. Tüzemen, G. Wlazłowski, "Spin–polarized droplets in the unitary
fermi gas", Phys. Rev. A 100, 3 (2019).

• B. Tüzemen and P. Kukliński and P. Magierski and G. Wlazłowski, "Properties
of spin–polarized impurities - ferrons, in the unitary fermi gas", Acta Physica
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Polonia B, vol 51 (2020).

• P. Magierski, B. Tüzemen, G. Wlazłowski, "Dynamics of spin–polarized impurity
in ultracold Fermi gas", Phys. Rev. A 104, 3 (2021).

Słowa kluczowe: ultrazimny gaz Fermiego z polaryzacją spinową, faza FFLO, stany związane
Andreeva, nadciekłość nierównowagowa
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Chapter 1

Introduction

The description of the Fermi gas has come a long way since its first conceptualiza-
tion. The empirical attempts to describe the behavior of the classical non–interacting
(ideal) gas during the 18th and 19th centuries eventually yielded to an equation of
state known as ideal gas law. This understanding has brought up the thermodynamic
cycles allowing to build heat engines and coolers. The first decade of the 20th century
was when Kamerlingh Onnes utilized the Hampson–Linde cycle to cool down the he-
lium to its liquid state. He then continued his low–temperature studies to observe
the effects of temperature on electrical conductivity. He expected to find a linear rela-
tionship between the electrical resistance and the temperature. Since the third law of
thermodynamics states that to reach absolute zero is impossible, a linear relationship
that can be extrapolated to absolute zero would confirm the hypothesis. However, this
was not the case. In 1911, Onnes’ experiments on mercury showed a sharp decrease in
the resistance at T = 4.2K; it has vanished [1]. He named this new state of matter as
superconducting state.

Following the discovery of superconductivity, there has been extensive research
on low–temperature physics. Phenomenological studies showed the repulsion of the
external magnetic field from the superconductor, known as the Meissner effect [2]. Later
on, superfluidity was discovered in an isotope of helium 4He, where the fluid flow
shows no viscosity when it is cooled under a certain temperature [3].

Simultaneous advances in formulating quantum mechanics have made it possible
to provide a microscopic description for both Fermi and Bose gases. Contrary to the
classical gas described by Maxwell–Boltzmann distribution, the quantum gases are
described by Fermi–Dirac distribution for particles with half–integer spins (fermions)
and by Bose–Einstein distribution for particles with integer spins (bosons). The main
difference between fermions and bosons originates from the Pauli principle. Multiple
bosons are allowed to occupy the same quantum state, whereas, for fermions, only one
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particle is allowed to occupy a quantum state. As predicted by Bose [4] and Einstein [5]
and showed experimentally by Cornell, Wieman, and Ketterle [6, 7], in temperatures
close to absolute zero, multiple identical bosons occupy the same quantum state with
the lowest energy. Macroscopic occupation of a single quantum state causes a phase
transition resulting in a new state of matter called Bose–Einstein condensate (BEC).
For this reason, the superconductivity in metals composed of Fermi gas and superflu-
idity of bosonic 4He atoms are initially thought to be originated from different sources.
Today, we know that this statement is incomplete. In fact, another helium isotope,
3He, even though it obeys Fermi–Dirac statistics, when it is cooled down, it also be-
comes superfluid [8, 9]. In 1941, Landau showed in his phenomenological model that
the superconductivity in metals can be actually understood in terms of superflow of
charged particles in the macroscopic sense [10]. Milestone of the microscopic descrip-
tion of superconductivity was established in 1957. Bardeen, Cooper, and Schrieffer
(BCS) showed that in low temperatures, an attractive interaction between electrons of
any kind and any strength results in the pairing of electrons of opposite spins occu-
pying the same quantum state near the Fermi surface [11]. With the formation of the
Cooper pairs, the Fermi surface becomes unstable, and a pairing gap opens. The mag-
nitude of the pairing gap sets the minimum energy required to obtain a single–particle
excitation. Hence, any perturbation, such as friction or electrical resistance, below the
pairing strength would fail to break the Cooper pairs.

In practice, one of the possible sources of this attractive interaction between elec-
trons in a metal is mediated by the lattice vibrations, phonons. In ultracold gases, the
mechanism of Cooper pair creation is possible by using an external magnetic field to
tune the interactions between the particles by Feshbach resonances resulting in a su-
perfluid phase in a neutral charged Fermi gas [12].

1.1 BCS–BEC crossover

Initially, it was thought that the BEC of diatomic molecules and BCS–type supercon-
ductivity in metals are originated from different sources. In the metallic superconduc-
tivity, two length scales are essential; the inter–particle distance k−1

F and the size of a
Cooper pair ξ (also known as the coherence length). In the weak–coupling regime,
where the pairing correlations are weak compared to the Fermi energy εF, the size of
a Cooper pair is considerably longer than the inter–particle distance. Therefore, in a
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weakly paired BCS superfluid, the Cooper pairs overlap. In contrast to the BCS, the
BEC is formed by bosonic bound states of tightly packed fermions.

The idea to consider the BCS and the BEC regimes as two extremes of the same
phenomenon sprouted with the work done by Eagles in 1969. He studied supercon-
ductivity at low densities, where the interaction strength is comparable with the Fermi
energy [13]. In the ’80s, with two seminal papers by Leggett [14], and Nozières and
Schmitt–Rink [15], the idea of the transition from BCS to BEC or vice versa as a func-
tion of the s–wave scattering length as have settled. The scattering length sets the
strength of the interaction between the particles. It is negative in the case of weak at-
traction between the particles as in BCS superfluidity and positive when the bosonic
bound state is formed by two fermions that have intrinsic repulsive interaction due to
the Pauli principle. A schematic of this crossover is shown in Fig. 1.1.

The interesting phenomenon happens when the scattering length is much larger
than the inter–particle distance, |askF| � 1, in a dilute system where the effective
range of interaction re is much smaller than the inter–particle distance, rekF � 1.
In other words, this limit is reached when the dimensionless parameter goes to zero,
(askF)

−1 → 0. Then, the interaction range drops out, and only a meaningful parameter
becomes the Fermi momentum, hence the particle density n = k3

F/3π2.
The limit where (askF)

−1 → −∞ is the BCS limit, and the limit where (askF)
−1 → ∞

is the BEC limit. The crossover from large Cooper pairs to point like bosons is a smooth
one, and the regime in the middle of this crossover, where (askF)

−1 → 0 is called the
unitary Fermi gas. In this regime, all the system properties, such as the ground state
energy and thermodynamic response functions, can be expressed in particle density.
In particular, George Bertsch argued that the relation between the ground state energy
of a non–interacting Fermi gas and the unitary Fermi gas [17]:

Eunitary = ξBEFFG =
3
5

εFNξB. (1.1)

The dimensionless parameter ξB is called the Bertsch parameter. In finite tempera-
tures, it is a function of the temperature and the Fermi energy, ξB(T/εF). An important
remark is that the case where the scattering length is infinitely larger than the effective
range of interaction is a rare one. The relation as � re approximately holds in the crust
of neutron stars composed by the dilute neutron matter [18] or, it can be generated in
a laboratory by Feshbach resonances [12].

A remarkable property of the unitary Fermi gas is its exceptionally strong pairing
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FIGURE 1.1: The qualitative phase diagram of the BCS–BEC crossover as
a function of the dimensionless temperature T/εF and the dimensionless
interaction parameter (askF)

−1. It can be seen that the spectrum can be
roughly divided in three parts. 1) The BCS limit where (askF)

−1 → −∞.
2) The BEC limit where (askF)

−1 → ∞. 3) The unitary limit where,
(askF)

−1 → 0. The figure is taken from Ref. [16].
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field. As the scattering length diverges, the loose Cooper pairs become tighter, and the
strength of the pairing field increases. Unitary Fermi gas corresponds to the strongest
pairing field where the strength of the pairing field ∆ becomes comparable with the
Fermi energy, |∆| ≈ 0.5εF [19–21], and the size of a Cooper pair decreases to the order
of the inter–particle distance. This strong pairing interaction means the unitary Fermi
gas is more robust to perturbations such as pair–breaking or thermal excitations than
the BCS superfluid.

1.2 Spin–imbalanced ultracold Fermi gas

The ground state of a fermionic superfluid is composed of Cooper pairs. The pairing
interaction may occur between different types of pairs. The most common and the sim-
plest type of interaction is the s–wave pairing which couples fermions of the opposite
spins and momenta. Therefore, the ground state configuration of an s–wave superfluid
is composed of an equal spin population, N↑ = N↓.

When a spin–flipping process occurs by a polarizing external potential such as a
magnetic field, the fermions composing the Cooper pairs start to align according to this
external potential; a Cooper pair made of fermions with opposite spins gets broken,
and both fermions obtain the same spin. The number of broken Cooper pairs is related
to work performed by the external potential. A decrease in the number of Cooper
pairs lowers the magnitude of the pairing field. Chandrasekhar [22], and Clogston [23]
showed that the spin–imbalance (or spin–polarization) is related with the strength of
an external magnetic field B as the following:

µ̃ =
µ↑ − µ↓

2
=

γB
2

, (1.2)

where µ̃ is the chemical potential difference caused by the spin–imbalance, and γ

is the gyromagnetic ratio. Moreover, they showed that when the chemical potential
difference reaches a critical value, a first–order phase transition happens where the su-
perfluidity is destroyed altogether, leaving a normal spin–polarized Fermi gas behind.
The critical chemical potential difference is:

µ̃c =
|∆0|√

2
, (1.3)
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FIGURE 1.2: The quasi–particle excitation spectra of the fully–paired BCS
superfluid (a) and Sarma phase (b). The upper branches show the spectra
for the spin–down particles and the lower branches show the spectra for
spin–up particles. The BCS case shows the excitation gap whereas the
Sarma case admits gapless excitations. The figure is taken from Ref. [24].

where |∆0| is the magnitude of the pairing field at µ̃ = 0. Therefore, there is a
limiting value for the spin–imbalance in a system that persists superfluidity, and this
critical value is directly related to the strength of the initial pairing field.

Later on, it was shown by Sarma [25] that there is an exotic phase for the imbal-
anced case where the superfluid and the normal state coexists. In Fig. 1.2(a) the exci-
tation spectrum for BCS is shown. It can be seen that for a quasi–particle excitation
in both spin species, there is an energy cost (gap), meaning the expulsion of the un-
paired quasi–particle from the superfluid. In the Sarma phase, presented in Fig. 1.2(b),
both gapped and gapless excitations are possible. The gapless excitations provide a
spin–polarization around the average chemical potential µ. This creates a phase sep-
aration in the momentum space. Namely, the spin–polarized quasi–particles occupy
a limited number states around the momentum |k| = (2mµ)1/2 /h̄. For the high and
low momenta, the excitation spectrum is gapped, so these states are described within
the BCS theory. Therefore, the Sarma phase allows the coexistence of normal and su-
perfluid phases. Although the Sarma phase has gathered a lot of attention from the
community [26–28], it turned out to be an unstable phase and has not been confirmed
experimentally yet.

Approximately 40 years after the proposal of the Sarma phase, Liu and Wilczek ex-
tended the spin–imbalance case to both spin and mass imbalances [29]. The addition of
the mass–imbalance is motivated by the superfluidity in dense quark matter, where six
different quark flavors have unique masses. It was shown that in the zero–temperature
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FIGURE 1.3: The figure on the left–hand side shows the Fermi surfaces of
non–interacting two–component polarized Fermi gas. It is clearly shown
that the majority component has a larger Fermi surface. The figure on the
right–hand side shows the Fermi surfaces of a paired system, where the
Cooper pairs have a finite center of mass momentum q. This is compen-
sated by the acquisition of finite momentum on the opposite side by the

unpaired majority population. The figure is taken from Ref. [39].

limit, this so–called "breached pair" phase is stable [30, 31].
The Sarma and breached pair phases are not the only scenarios that admit polar-

ized particles into a superfluid system. There are various other phenomena such as
polarized vortex cores [32–34], liquid crystals [35], or supersolids [36] where the un-
paired particles can coexist with the superfluid. However, in relation to this study, one
idea which was proposed by Fulde–Ferrel (FF) [37], and Larkin–Ovchinnikov (LO) [38]
stands out.

The idea behind the FFLO (or LOFF) state is to attribute a finite momentum to the
Cooper pairs due to the shift in the Fermi surfaces (see Fig. 1.3). In an ordinary s–wave
superfluid, the Cooper pairs are composed of fermions having the opposite momenta
and spins {k, ↑} and {−k, ↓}. In the FFLO picture, the Cooper pairs obtain a center
of mass momentum q related to the spin–imbalance. Therefore, the pairing occurs be-
tween the pairs {k + q/2, ↑} and {−k + q/2, ↓}. This induces a spatial modulation
in the pairing field with the period of 2π/q [40]. Historically, FF proposed a modula-
tion that has the form ∆(r) ∼ |∆|eiq·r and LO proposed a form of ∆(r) ∼ |∆| cos q · r.
However, these are just the basic forms for the pairing field, and in reality, the spatial
modulation of the pairing field may have a more complicated structure, such as differ-
ent superpositions of FF and LO type of pairings. Although the FFLO phase has been
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studied extensively [39–41], the experimental confirmation is still lacking.
A qualitative phase diagram of ultracold Fermi gas as a function of the scattering

length and temperature is given at Fig. 1.1. There have been numerous attempts to ob-
tain another phase diagram where the chemical potential difference (or polarization)
enters as a degree of freedom [19, 42–45]. While there is no solid consensus on a phase
diagram of polarized ultracold Fermi gas (see Fig. 1.4), it is instructive to consider ex-
cited meta–stable structures where the polarization can be stored locally in a superfluid
environment. This thesis aims to show that there is indeed such a structure in the form
of a spin–polarized droplet with remarkable stability. This excited meta–stable config-
uration is dubbed as ferron [46]. During the study of this thesis, stable spin–polarized
solutions of Ginzburg–Landau approach are reported [47]. Although these objects are
described as soliton sacks, their structure coincides with the ferron.

Two subsequent chapters of this thesis deal with the theoretical background where
the BCS problem is studied in detail and the numerical framework considered to study
the ultracold Fermi gas. In Chapter 4, a time–dependent scenario for the creation of
the ferron is shown. Moreover, this chapter discusses the stability of the droplet and
presents some more exotic configurations such as deformations or concentric ferrons.
Chapter 5 discusses the minimum–energy configuration of the ferron in static calcula-
tions. The inner structure of the ferron and some fundamental relations are studied in
this chapter. Finally, Chapter 6 puts the ferron in a superflow and studies the parame-
ters that govern the motion of the ferron, such as its critical velocity and inertia.

1.3 Experimental techniques

The theory of ultracold quantum gases, both bosonic and fermionic, has been exten-
sively studied from the beginning of the 20th century. However, the macroscopic quan-
tum coherence was first realized at the turn of the century, in 1995, using bosonic alkali
atoms of Rubidium [6] and Sodium [7]. To obtain such a system, the bosonic gas has to
be cooled down to microkelvins, where it undergoes a phase transition to BEC state. In
order to achieve that, a rather sophisticated approach has been used [48]. Initially, the
atoms were cooled down to a degree by laser cooling technique. The main idea behind
laser cooling is to slow down the high–temperature 87 Rb atoms using a laser beam ap-
plied in the opposite direction. The atoms absorb the laser beam, and as a result of the
radiation, the atoms slow down. In particular, the atoms in motion do not have a fixed
direction. The direction of the laser beam, however, is fixed. As a result of the Doppler
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FIGURE 1.4: A sketch of the grand–canonical phase diagram at T = 0 for
the Fermi gas. On the horizontal axis, the scattering length and on the
vertical axis the chemical potential difference is presented. As it can be
seen, the picture is not complete even qualitatively. The figure is taken

from Ref. [43].

effect, the atoms moving in the same direction as the laser have a reduced rate of ab-
sorption. The atoms moving in the opposite direction than the laser have an increased
rate of absorption. The technique called "optical molasses" employs the Doppler effect
by utilizing multiple laser beams. Having multiple laser beams oriented in different
directions creates a viscous environment for the atoms allowing the experimentalists
to slow down the atoms more efficiently [49].

When the atoms are slow enough, they can be captured by magnetic and optical
traps for further manipulation. The final step is to expel the high–energy particles from
the system, i.e., by applying a microwave with a specific frequency to excite the high–
energy particles outside the trap. After that, the system is left to thermalize to a colder
temperature. This process, called evaporative cooling, has been crucial to realizing the
ultra–low temperatures necessary to obtain a BEC.

After the realization of BEC, it took the experimentalists only four years to achieve
an ultracold Fermi gas using alkali atoms of 40 K. In 1999, a quantum degenerate Fermi
gas was obtained [50]. It has been followed by the fermionic condensation [51], the ob-
servation of the pairing gap [52], and finally, the superfluid properties of the ultracold
Fermi gas were completely proven with the observation of the vortices [53].

The interaction between the particles is characterized by the s–wave scattering
length as. Feshbach resonances can tune both the magnitude and sign of the scattering
length [12, 54], which in practice means the application of an external magnetic field.
The basic idea is the following: During an elastic two–body scattering, the particles
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FIGURE 1.5: A basic model for Feshbach resonances. The scattering event
that occurs with the energy E can be coupled to a bound state in a closed

channel with the energy of Ec. The figure is taken from Ref. [12].

enter in a potential well Vbg also referred to as "open channel." Another channel, which
is not allowed for the scattering, is referred to as a "closed channel." This channel is
coupled to the open channel. Using a magnetic (or optical) external potential B, the
bound state in the closed channel can be brought near the zero–energy level where
the scattering events usually occur in ultracold temperatures. Then, the channels enter
resonance even when they are weakly coupled. This results in an altered scattering
length:

as = a0

(
1− w

B− B0

)
, (1.4)

where a0 is the non–resonant scattering length, w is the width of the resonance, and
B0 is the resonant magnetic field. By varying B or w, one may change not only the
strength of the interaction but also whether if the interaction is attractive (as < 0) or
repulsive (as > 0). The qualitative BCS–BEC crossover spectrum in Fig. 1.1 is realized
by utilizing the Feshbach resonances.
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BCS superconductivity

The key aspect for the superconductivity is the existence of the pairing gap ∆. Below
the critical temperature, an attractive interaction between particles causes them to form
correlated pairs known as Cooper pairs. No matter how weak the attraction is, this
pairing creates a gap in the density of states around the Fermi energy leading to a
condensed state of matter.

In a free Fermi gas, the particles occupy the energy levels according to their statistics
described by the Fermi–Dirac distribution fk = 1

1+e(εk−µ)/kBT , where µ is the chemical
potential, T is the temperature, kB is the Boltzmann constant, and εk is the single–
particle energy. Since fermions are forbidden to occupy the same quantum state, they
fill the momentum space up to a certain level related to the total density of the gas
called the Fermi level. In zero temperature, the maximum energy that a particle can
have in a ground state is the Fermi energy εF = h̄2

2m k2
F where kF = (3π2n)

1
3 is the Fermi

wave vector in 3D and n is the particle density of the system.
The source of the attractive interaction between particles depends on the system.

However, for conventional superconductivity, the electron–phonon interaction is the
most common natural source. In 1950, Frölich showed that the interaction between two
electrons mediated by the lattice phonons could be effectively attractive [55]. Later in
1956, Cooper revealed that this interaction might indeed lead to a formation of electron
pairs near the Fermi level [56]. More precisely, the attractive interaction is restricted to
the electrons in the range of |εk − εF| < h̄ωD where ωD is the Debye frequency which
is a characteristic frequency of phonons. Subsequently, in 1957, Bardeen, Cooper, and
Schrieffer (BCS) presented the microscopic theory of superconductivity [11]. This chap-
ter contains a summary of the BCS model and its one particular outcome called the
Andreev states, which are essential to follow the original discussions of this thesis. De-
tailed derivations and pedagogical discussions on the BCS superconductivity can be
found in Refs. [57–59].
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2.1 The BCS model

Let us consider the case where there are two electrons above the Fermi level with the
coordinates {r1, σ1} and {r2, σ2} where r is the spatial coordinate and σ is the spin
alignment of an electron. The fermionic many–body wave function consisting of iden-
tical particles is anti–symmetric as a result of the Pauli principle:

Ψ(r1, σ1, r2, σ2) = −Ψ(r2, σ2, r1, σ1). (2.1)

The conventional choice for the spin wave function is the singlet form for practical
reasons (s–wave pairing). Since both the spin–singlet wave function and the complete
wave function are odd functions, the spatial wave function must be an even function
which can be expanded in terms of plane waves:

Ψ(r1 − r2) = ∑
k

φkeik ·(r1−r2), (2.2)

where φk is the probability amplitude to find two particles with the wave vectors k
and−k with opposite spin alignments since the spin properties are initially selected as
singlet (see Fig. 2.1). Eq. (2.2) can be inserted into the two–particle time–independent
Schrödinger equation:

− h̄2

2m
(∇2

1 +∇2
2)Ψ(r1 − r2) + V(r1, r2)Ψ(r1 − r2) = (E + 2εF)Ψ(r1 − r2). (2.3)

The solution of above equation yields to [57–59]:

E = −2h̄ωDe
−2

D(0)V . (2.4)

Therefore, in the presence of an attractive interaction of any strength, it is favorable
for those two electrons to become correlated since this correlation reduces their energy
below the Fermi level. In this particular case, the attractive interaction mediated by
phonons is meaningful for the thin shell centered around the Fermi energy with the
thickness of 2h̄ωD. All the electrons within this shell form Cooper pairs. The formation
of pairs results in a gap in the single–particle density of states around the Fermi energy.
Thus, provided an attractive interaction between the particles, a free Fermi gas in its
normal state is unstable against the formation of Cooper pairs.
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FIGURE 2.1: The interaction considered in the Cooper problem. The par-
ticles with momenta and spins {k, ↑} and {−k, ↓} are scattered to {k′, ↑}

and {−k′, ↓} as a result of an attractive interaction.

To consider N electrons, we treat them in pairs and construct the following many–
body wave function:

ΨN(r1, r2, ..., rN) = Ψ(r1 − r2)Ψ(r3 − r4)...Ψ(rN−1 − rN). (2.5)

An initial remark would be the necessity of having an even number of particles N
to group the electrons in pairs. In the case of having odd N, the effect of the additional
electron is suppressed in the limit of N → 1023. However, in the cases where the N is
relatively small, such as the atomic nuclei, having an odd or even N plays a vital role
[57, 60].

Eq. (2.5) is missing the spin–singlet configuration and anti–symmetric structure.
Therefore, it is modified as:

ΨN(r1σ1, ..., rNσN) =
1√
N!

∑
p
(−1)pΨ(r1σ1, r2σ2)...Ψ(rN−1σN−1, rNσN), (2.6)

where we define a single–pair wave function in spin–singlet state:
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Ψ(r1σ1, r2σ2) =
1√
2

∑
k

φk

(
|↑↓〉 eik·(r1−r2) − |↓↑〉 e−ik·(r1−r2)

)
. (2.7)

We change the notation by introducing the annihilation and creation operators. The
creation operator c†

kσ acting on the vacuum state |0〉 creates a particle at {k, σ}. The an-
nihilation operator, which is the adjoint of the creation operator, acting on the vacuum
has no effect, ckσ |0〉 = |0〉. Here, the vacuum state represents the Fermi level. The
fermionic creation and annihilation operators obey anti–commutation rules:

{ca, c†
b} = cac†

b + c†
bca = δab,

{ca, cb} = 0,

{c†
a , c†

b} = 0. (2.8)

Using the creation and annihilation operators Eq. (2.7) can be interpreted as:

Ψ = ∑
k

φkc†
k↑c

†
−k↓ |0〉 = ∑

k
φkb†

k |0〉 . (2.9)

where we define b†
k = c†

k↑c
†
−k↓ as the spin–singlet pair creation operator. The many–

body wave function in Eq. (2.6) can be written as:

ΨN = ∑
k1,k2,...,kN/2

φk1φk2 ...φkN/2
b†

k1
b†

k2
...b†

kN/2
|0〉 . (2.10)

At this point, it is clear that Eq. (2.10) is too complicated to deal with. For N/2
pairs there are numerous different values of ki which makes it difficult to calculate the
amplitudes φki for large particle numbers such as N ≈ 1023. Instead, what BCS did
was to relax the constraint on having fixed particle numbers and consider the system
as a coherent state of the fermion pairs. As it is stated in the Thouless’ theorem [61],
a N-body product wave function which is not orthogonal to its vacuum state (such as
coherent states) can be described as:

|ΨBCS〉 = Ce∑k φkb†
k |0〉 = C∏

k
eφkb†

k |0〉 = C∏
k

(
1 + φkb†

k

)
|0〉 , (2.11)

where we have used the commutation properties of pair creation operator
[
b†

k, b†
k′

]
=

0 and
(
b†

k
)2

= 0. To find the normalization constant C:
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〈ΨBCS〉 = 〈0|
(

1 + φ?
kbk

) (
1 + φkb†

k

)
|0〉 = 1 + |φk|2 = 1. (2.12)

Therefore we can write the normalized BCS wave function as:

|ΨBCS〉 = ∏
k

(
uk + vkb†

k

)
|0〉 , (2.13)

where uk and vk are called as BCS parameters. They are defined as:

φk =
vk
uk

,

1 = |vk|2 + |uk|2. (2.14)

Note that we are not working with a system which has fixed particle numbers rather
a superposition of different numbers of pairs. Therefore, there is a standard deviation

of particle number ∆N =

√
〈N̂2〉 − 〈N̂〉2 where N̂ = ∑k,σ=↑↓ c†

kσckσ is the particle
number operator. However, if the macroscopic value of the number of particles is
considered, this deviation is negligible in comparison.

Since φk has no restriction to be a real number, the BCS wave function can be written
in terms of real components of the BCS parameters with a complex phase:

|ΨBCS〉 = ∏
k

(
|uk|+ |vk|eiϕb†

k

)
|0〉 . (2.15)

The phase of the BCS wave function ϕ and the particle number N are conjugate
operators hence there is an uncertainty relation between them:

∆N.∆ϕ ≥ 1
2

. (2.16)

Later, we shall see that the phase factor plays a vital role in the transport properties
of superconductors. More details on that could be found in Ref. [62].

2.2 Mean–field Hamiltonian

In order to model the BCS superfluid, consider the following Hamiltonian:
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HBCS = ∑
k,σ=↑↓

εkc†
kσckσ −∑

k,l
Vk,lc

†
k↑c

†
−k↓c−l↓cl↑. (2.17)

The first term contains the kinetic energy of a single particle εk = h̄2

2m k2 and the
second term stands for the scattering of particles with momentum and spin {l, ↑} and
{−l, ↓} to {k, ↑} and {−k, ↓}. Therefore, we restrict ourselves to the simple singlet
pairing.

We switch to a more general notation:

HBCS = ∑
k

εk

(
c†

kck + c†
k̄ck̄

)
−∑

k,l
Vk,lc

†
kc†

k̄cl̄ cl , (2.18)

where we consider the states {k, ↑} and {−k, ↓} as time–reversed pairs and rename
them as k and k̄.

By describing the BCS wave function as a coherent state (Eq. (2.11)) we have moved
to a grand canonical ensemble. Consequently, in order to investigate a system with a
certain average particle number we add the constraint on the particle number by using
the chemical potential as a Lagrange multiplier:

H = HBCS −∑
σ

µσN̂σ,

H = HBCS − µkc†
kck − µk̄c†

k̄ck̄,

H = ∑
k

(
hkc†

kck + hk̄c†
k̄ck̄

)
−∑

k,l
Vk,lc

†
kc†

k̄cl̄ cl , (2.19)

where hk = εk − µk. Using different chemical potentials for different spin compo-
nents makes it possible to have an unequal number of particles in the system. For the
ground state of the BCS superfluid, all particles should be paired; therefore, µk = µk̄.
However, the excited configurations of this system may be obtained by spin imbalance.

The interaction term in Eq. (2.19) is quite demanding to deal with. To simplify, we
use the fact that the system is at the thermodynamic limit; therefore, the fluctuations
of an observable around its average value can be disregarded. To implement this, we
rewrite the following operator as:
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c†
kc†

k̄ = 〈c†
kc†

k̄〉+ c†
kc†

k̄ − 〈c
†
kc†

k̄〉 ,

c†
kc†

k̄ = 〈c†
kc†

k̄〉+ δck. (2.20)

Here 〈c†
kc†

k̄〉 is the expectation value of the operator c†
kc†

k̄ and δck is the fluctuation
around this expectation value. Now, we rewrite Eq. (2.19) with disregarding the small
terms such as δckδcl:

H = ∑
k

(
hkc†

kck + hk̄c†
k̄ck̄ + ∆k c†

kc†
k̄ + ∆?

k ck̄ck

)
, (2.21)

where
∆k = −∑

l
Vk,l 〈cl̄ cl 〉 (2.22)

is the pairing potential between the time–reversed pairs. Here, it should be noted that
the pairing potential is a complex field. It is expressed by its magnitude |∆|, and its
complex phase ϕ:

∆(r) = |∆(r)|eiϕ(r). (2.23)

The mean–field approximation allows us to consider the inter–particle interactions
as their average value. Despite the simplifications, it gives a clear description of the
system, and it is easy to re–implement some of the fluctuations or interaction channels
that are ignored.

The last thing to do with the Hamiltonian in Eq. (2.21) is to enforce the anti–commutation
rules of the creation and annihilation operators in Eq. (2.8):

H =
1
2 ∑

k

(
hk

(
c†

kck − ckc†
k + 1

)
+ hk̄

(
c†

k̄ck̄ − ck̄c†
k̄ + 1

)
+ ∆k

(
c†

kc†
k̄ − c†

k̄c†
k

)
+ ∆?

k

(
ck̄ck − ckck̄

))
.

(2.24)
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It can also be written as:

H =
1
2 ∑

k

(
c†

k c†
k̄ ck ck̄

)


hk 0 0 ∆k

0 hk̄ −∆k 0
0 −∆?

k −hk 0
∆?

k 0 0 −hk̄




ck
ck̄
c†

k
c†

k̄

 , (2.25)

where we disregard the constant contributions and only focus on the operator terms.
Above Hamiltonian defines a uniform system, where there is no spatial dependence.
Since, k is a good quantum number, the Hamiltonian can be solved separately for each
k. The expectation value of the Hamiltonian in Eq. (2.24) is:

〈H〉 = 1
2 ∑

k

(
hk

(
|vk|2 − |uk|2 + 1

)
+ hk̄

(
|vk̄|

2 − |uk̄|
2 + 1

)
+ ∆k

(
vku?

k̄ − vk̄u?
k̄

)
+ ∆?

k
(
uk̄v?k − ukv?k̄

))
= ∑

k
Ek.

(2.26)

We minimize the Hamiltonian with respect to the BCS parameters:

∂〈H〉
∂u?

k
+ Ekuk = 0,

∂〈H〉
∂v?k

+ Ekvk = 0,

∂〈H〉
∂u?

k̄
+ Ekuk̄ = 0,

∂〈H〉
∂v?k̄

+ Ekvk̄ = 0, (2.27)

and consequently, because of the diagonal nature of above 4x4 matrix, we obtain
two independent matrix equations:

(
hk ∆k

∆?
k −h?k̄

)(
uk

vk̄

)
= Ek

(
uk

vk̄

)
, (2.28)(

hk̄ −∆k

−∆?
k −h?k

)(
uk̄
vk

)
= Ek

(
uk̄
vk

)
. (2.29)

It is possible to obtain the second equation from the first one (or vice versa) through
the following transformation:
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(
0 1
1 0

)(
hk ∆k

∆?
k −h?k̄

)(
1 0
0 1

)(
uk

vk̄

)
= Ek

(
0 1
1 0

)(
uk

vk̄

)
,(

0 1
1 0

)(
hk ∆k

∆?
k −h?k̄

)(
0 1
1 0

)(
0 1
1 0

)(
uk

vk̄

)
= Ek

(
0 1
1 0

)(
uk

vk̄

)
,(

hk̄ −∆k

−∆?
k −h?k

)(
v?k̄
u?

k

)
= −Ek

(
v?k̄
u?

k

)
. (2.30)

Therefore, we can calculate Eq. (2.28) and Eq. (2.29) might be easily solved using
the transformation {vk, uk̄, Ek} → {u?

k, v?k̄,−Ek}.

The BCS ground state

The single–particle potentials, hk, and hk̄ are different by the chemical potential term
they have. To investigate the BCS ground state, we must have an equal number of
particles for k and k̄, making hk = hk̄. Solving the eigenvalue problem at Eq. (2.28) we
get the eigenvalues:

Ek = ±
√
(εk − µ)2 + |∆|2, (2.31)

and the BCS parameters:

|uk|2 =
1
2

(
1 +

εk − µ

Ek

)
,

|vk̄|
2 =

1
2

(
1− εk − µ

Ek

)
,

ukv?k̄ =
∆

2Ek
. (2.32)

It is easy to see that in the case of no pairing ∆ = 0, the above equations describe the
free Fermi gas where the energy of a quantum state is described by its kinetic energy
relative to the chemical potential, Ek = ± (εk − µ). The energies below the Fermi level
describe the Fermi sea occupied by particles, |vk̄|

2 = 1 and the energies with positive
values represent the hole states unoccupied by the particles above the Fermi level,
|uk|2 = 1. The existence of the pairing gap creates coherence between particle and hole
states, allowing us to treat electron–hole pairs as quasi–particles (see Fig. 2.2).
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The other limiting case where εk = µ, we have Ek = ±|∆|. Here we see that the
pairing term plays a role of an effective barrier, setting a minimum energy cost of 2|∆|
to excite the ground state.

As stated in Eq. (2.30), the time–reversed solutions can be obtained by a simple
transformation. Additionally, the self–consistency condition for the pairing field can
be obtained with Eq. (2.22) and Eq. (2.32):

1 =
V
2 ∑

k

1√
(εk − µ)2 − |∆|2

. (2.33)

It is possible to convert the above summation into an integration:

1 =
D(0)V

2

∫ h̄ωD

0

dh√
h2 − |∆|2

. (2.34)

In the limit of weak pairing, h̄ωD >> ∆, this integral gives:

∆ = 2h̄ωDe−
1

D(0)V . (2.35)

Notice that this relation is similar to the energy of the bound state in Eq. (2.4). An-
other remark is that we have defined our Hamiltonian in its simplest form. We did
not include a spin–orbit term in the mean–field description in Eq. (2.20) where the
additional term c†

k↑ck↓ is needed. Moreover, we have only limited our case to singlet–
pairing, where the pairing occurs between time–reversed pairs, Eq. (2.22). A more
general Hamiltonian than Eq. (2.25) would be written as:

H =


h↑↑(k) h↑↓(k) 0 ∆↑↓(k)
h↓↑(k) h↓↓(k) −∆↓↑(k) 0

0 −∆?
↓↑(k) −h?↑↑(k) −h?↑↓(k)

∆?
↑↓(k) 0 −h?↓↑(k) −h?↓↓(k)

 . (2.36)

The eigenvalue problem of the above Hamiltonian is called the Hartree–Fock Bogoli-
ubov (HFB) problem. The Hartree term stands for the diagonal terms of the single–
particle part of the Hamiltonian, while the Fock terms are the off–diagonals. The Bo-
goliubov terms are the contribution coming from the spin–singlet pairing. In more
exotic cases, such as p–wave pairing, where spin–triplet channels are active, the off–
diagonals of the pairing sector of above Hamiltonian would acquire non–zero values.
We consider neither a spin–orbit case nor triplet pairing throughout this work, so we
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FIGURE 2.2: The occupations of energy levels according to BCS model. It
can be seen that for ∆ = 0, the levels below the Fermi level are completely
occupied by particles

(
|vk|2

)
whereas the levels above the Fermi level are

completely occupied by holes
(
|uk|2

)
. When ∆ 6= 0, the particle and hole

states mix.



22 Chapter 2. BCS superconductivity

stick to the Hamiltonian of the form Eq. (2.25), which is called the Bogoliubov–de
Gennes (BdG) framework. Even though it has a more straightforward form, it is still
tedious to deal with its excited states. In the next section, to study the excited states,
we will describe a canonical transformation to handle the complications elegantly.

2.3 The Bogoliubov transformation

As shown in the previous section, the BCS Hamiltonian has both positive and negative
energy solutions, Ek and −Ek. The two eigenvectors corresponding to these energies

are respectively

(
uk

vk̄

)
and

(
−v?k̄

u?
k

)
. From these eigenvectors we define a unitary

matrix,W , which will diagonalize the BCS Hamiltonian in the following way:

W†HW =

(
u?

k v?k̄
−vk̄ uk

)(
hk ∆k

∆?
k −h?k̄

)(
uk −v?k̄
vk̄ u?

k

)
=

(
Ek 0
0 −Ek

)
. (2.37)

Therefore,

H = ∑
k

(
c†

k ck̄

)
W
(

Ek 0
0 −Ek

)
W†

(
ck
c†

k̄

)
. (2.38)

Here, we can define new particle annihilation and creation operators which is a
linear combination of particle and hole operators:

γk = u?
kck − v?k̄c†

k̄,

γ†
k̄ = uk̄c†

k̄ + vkck, (2.39)

and write the Hamiltonian in a simplified way:

H = ∑
k

Ek

(
γ†

kγk + γ†
k̄γk̄

)
. (2.40)

The quasi–particle operators in Eq. (2.39) obey fermionic anti–commutation rules at
Eq. (2.8). As we have pointed out in the previous section, the particle and hole states in
a paired system do correlate. The Bogoliubov transformation, while diagonalizing the
Hamiltonian, provides us a new quasi–particle description for these correlated particle
and hole states by considering them as a linear combination of both.
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The BCS ground state given in Eq. (2.13) is the vacuum for these quasi–particle
operators as one can see from:

γk |ΨBCS〉 = 0. (2.41)

Therefore, using the Bogoliubov operators, we can construct quasi–particle exci-
tations from a fully paired ground state. Although various sources may cause these
excitations, in this study, we focus mainly on two types of excitations: 1) An excitation
in the whole system that is caused by the finite temperature. 2) Excited quasi–particle
states caused by spin–imbalance, N↑ 6= N↓, in other words a chemical potential differ-
ence between the spin components µk 6= µk̄.

2.3.1 The BCS critical temperature

So far, we have considered the system in the limit of zero temperature, neglecting ther-
mal fluctuations. For this reason the expectation of the number operator for Bogoli-
ubov quasi–particles yields to zero, 〈γ†

kγk〉 = 0. When a finite temperature is intro-
duced to the system, there is a finite probability to find:

〈γ†
kγk〉 = f (k) ,

〈γkγ†
k〉 = 1− f (k) , (2.42)

where the probability fk is a function of temperature. Repeating the calculations from
the previous section for the finite temperature, we find that the gap equation in Eq. (2.22)
is modified as:

∆k = −∑
l

Vklu
?
l vl (1− 2 f (l)) . (2.43)

Since the probability of f (k) has a value between 0 and 1, the introduction of the
finite temperature diminishes the strength of the pairing field. The probability function
f (k) is the Fermi–Dirac function describing thermal excitations. It can be obtained by
minimizing the free energy. The free energy is:
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F = 〈H〉 − TS, (2.44)

F = ∑
k

hk

(
f (k) |uk|2 + (1− f (k))|vk̄|

2
)
− ∆ ∑

k

(
(1− 2 f (k))vk̄u?

k
)

+ 2kBT ∑
k
( f (k) ln f (k) + (1− f (k))ln(1− f (k))) . (2.45)

where S is the entropy and we have considered simple case of Vkl = V and ∆k = ∆l =

∆. The minimization of the free energy with respect to f (k) gives the Fermi–Dirac
distribution:

∂F
∂ f (k)

= 0, (2.46)

f (k) =
1

1 + eEkβ
, (2.47)

where β = (kBT)−1 is the inverse temperature. Rewriting Eq. (2.43):

1 =
V
2 ∑

k

tanh(
√

h2 + ∆2/2kBT)√
h2 + ∆2

, (2.48)

is the self consistency condition under the effect of finite temperature. In the limit
of zero temperature, we obtain Eq. (2.35). We are interested in the critical temperature
limit (T → Tc) where the pairing field suppose to vanish. Above summation can be
written in integral form as the following:

1
D(0)V

=
∫ h̄ωD

0

tanh(h/2kBTc)

h
dh =

∫ h̄ωD/2kBTc

0

tanh(x)
x

dx. (2.49)

By integrating the above expression by parts, we get:

Tc =
2eγE

πkB
h̄ωDe−

1
D0V , (2.50)

where γE ≈ 0.577 is the Euler’s constant. Comparing the above equation to Eq. (2.35),
we get the critical temperature in BCS model:

∆0

kBTc
= 1.76. (2.51)
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FIGURE 2.3: The behaviour of the magnitude of the pairing field as a func-
tion of temperature. The estimation of the BCS theory is compared with
experimental results obtained by different superconductors. The figure is

taken from Ref. [63].
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The above result has been tested numerous times and holds outstanding accu-
racy [64]. The complete behavior of ∆(T) can be described using the gap equation
in Eq. (2.48). In the limit of low temperature, the effect of finite temperature on the
pairing field is exponentially suppressed, e−∆/kBT ≈ 0. However, for the values near
the critical temperature, ∆/∆0 ∼

√
1− T/Tc. The behavior of the magnitude of the

pairing field as a function of temperature can be found at Fig. 2.3.

2.3.2 HFB equations in coordinate space

So far, we have discussed the BCS theory in momentum space where the system is as-
sumed to be uniform. To introduce a pairing field or an external potential with spatial
dependence, it is suitable to transfer the above methodology from momentum space
to coordinate space. To do that, we define the field operators employing Fourier trans-
form:

Ψ̂σ(r) = ∑
k

e ik·rcσk,

Ψ̂†
σ(r) = ∑

k
e−ik·rc†

σk. (2.52)

These field operators satisfy the anti–commutation relations in Eq. (2.8). Subse-
quently, the particle number operator, N can be defined as:

N̂ = ∑
σ

∫
drΨ̂†

σ(r)Ψ̂σ(r), (2.53)

and the Hamiltonian can be rewritten as:

H =
∫

dr ∑
σ

Ψ̂†
σ(r)

(
p2

2m
+ U(r)

)
Ψ̂σ(r)−

∫
drV(r)∑

σ

Ψ̂†
σ(r)Ψ̂

†
σ̄(r)Ψ̂σ̄(r)Ψ̂σ(r), (2.54)

where U is an arbitrary spatial potential. For convenience, we simply take it U(r) =
0 unless it is stated otherwise. By diagonalizing the Hamiltonian, we obtain the BCS
parameters, u, and v. Under finite temperature, utilizing the BCS parameters, we for-
mulate the densities as the following:
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nσ(r) = ∑
|Ek|<Ec

|vk,σ(r)|2 fβ(−Ek), (2.55)

τσ(r) = ∑
|Ek|<Ec

|∇vk,σ(r)|2 fβ(−Ek), (2.56)

ν(r) = ∑
|Ek|<Ec

v∗n,↓(r)uk,↑(r)
fβ(−Ek)− fβ(Ek)

2
, (2.57)

jσ(r) = ∑
|Ek|<Ec

Im[vk,σ(r)∇v∗k,σ(r)] fβ(−Ek), (2.58)

where nσ(r) is the number density of spin σ. τσ(r) is denoted as the kinetic den-
sity, ν(r) is the anomalous density and jσ(r) is the current density. We introduce
an energy cut–off, Ec, to avoid the divergence of kinetic and anomalous densities,
ν(r, r′) ∼ 1/|r− r′|. Finally, the energy density can be expressed as:

EBdG =
τ↑ + τ↓

2
+ geffν

†ν, (2.59)

where geff is the effective coupling constant, ∆(r) = −geffν(r).

2.4 Andreev bound states

Up to this point, we have only considered a pairing field that is uniform in coordinate
space. But what happens at the edge of the superconductor?

An important length scale for superconductors (and superfluids) is the coherence
length:

ξ =
εF

kF∆
, (2.60)

In detail, the coherence length is the approximate distance between the Cooper
pairs; the more potent the pairing, the tighter the pairs. Moreover, the quasi–particle
wave function can not end abruptly at the edge of the superconductor; it has to be con-
tinuous. Therefore, the scale in which the pairing vanishes smoothly at the edge is also
described by the coherence length [62]. In neighboring normal and superconducting
metals, the particle–hole correlations inside the superconductor may leak inside the
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normal metal. The proximity effect does not transform the normal metal into a super-
conductor, but the coherence between the particle and hole states may yet survive up
to the coherence length.

Let us consider a system divided into two parts, a normal metal in contact with a
superconductor. Since there is an energy gap in the superconductor, quasi–particles be-
low the pairing gap can not penetrate the superconductor because there are no allowed
levels for particles to occupy. To investigate the junction, we refer to BdG equations:(

H0 ∆(r)
∆?(r) −H0

)(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
, (2.61)

where pairing is defined as a step–like function, ∆(r) = θ(x)∆0eiϕ and H0 = − h̄
2m∇2−

µ is the single particle Hamiltonian. We set h̄ = m = 1. We assume no potential barrier
between the two parts, so there is no elastic scattering at the boundary. Furthermore,
we take a uniform superconductor where ∆(r) is smooth and changes slowly with
respect to mean inter–particle distance. This assumption implies a coherence length
much larger than lattice spacing, ξ >> k−1

F . In other words, the strength of the pairing
field is much smaller than the Fermi energy, |∆| << εF. As a result of this assumption,
it is possible to separate the BdG parameters u and v into slowly and rapidly varying
parts,

u(r) = ũ(r)eikFn̂·r, (2.62)

v(r) = ṽ(r)eikFn̂·r. (2.63)

Using Eq. (2.62) and Eq. (2.63) in Eq. (2.61) gives,

−∇2ũ(r)− ikF∇ũ(r) + ∆ ṽ(r) = Eũ(r), (2.64)

∇2ṽ(r) + ikF∇ṽ(r) + ∆?ũ(r) = Eṽ(r). (2.65)

Recalling the above assumption about the smoothness of ũ(r), the term∇2ũ(r) will be
non–significant with respect to ikF∇ũ(r). As a result, we obtain:(

−ikF∇ ∆(r)
∆?(r) ikF∇

)(
ũ(r)
ṽ(r)

)
= E

(
ũ(r)
ṽ(r)

)
. (2.66)

Using Andreev approximation, the differential equations are reduced from second
order to first order, which greatly simplifies the analytic examination. We now turn
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FIGURE 2.4: The SNS junction. The regions 1 and 3 are superconductors
and the region 2 is the normal part in between. The particle with the en-
ergy E reflects as a hole having the energy−E (relative to the Fermi level).

As a result a Cooper pair nucleates inside the superconductor.

our focus on a system consisting of a superconductor - normal - superconductor (SNS)
junction, Fig. 2.4. For simplicity, the pairing well can be considered only in one dimen-
sion. As a result, contributions to the wave–function from other dimensions are simply
plane waves, Ψ(x, y, z) = Ψ(x)eikyyeikzz. Furthermore, there are different solutions in
each region of the junction. These solutions should satisfy the boundary conditions at
x = 0 and x = d.

In the normal part, ∆ = 0. Hence, we have:(
−ikF

d
dx 0

0 ikF
d

dx

)(
ũ(x)
ṽ(x)

)
= E

(
ũ(x)
ṽ(x)

)
, (2.67)

and the wavefunction is:

Ψ2(x) =

 u2ei E
kF

x

v2e−i E
kF

x

 . (2.68)

In the superconductor regime, given the pairing field changes smoothly, the BCS
parameters can be expanded in the following way:

ũ(x) = f eiqx,

ṽ(x) = geiqx. (2.69)

The first and the third regions differ by their pairing terms. Here they are assumed
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that they have the same pairing strength, |∆1| = |∆2| = |∆| but their phases are uncon-
strained. The new BCS parameters are denoted as fi and gi where the index shows the
region from Fig. 2.4. Using the Eq. (2.66) the following expressions are obtained:

kFq fi + ∆ gi = E fi,

−kFqgi + ∆? fi = Egi, (2.70)

with,

q2 =
E2 − |∆|2

k2
F

. (2.71)

In the sub–gap regime where E < |∆|2 the wave–vector q is:

q = ±i
√
|∆|2 − E2

kF
= ±ip. (2.72)

This means below gap energies the wave–functions in the superconducting region are
evanescent. The single–particle solutions decay as they go further into the bulk of the
superconductor. The wave functions are:

Ψ2(x) =

(
u(x)
v(x)

)
=

(
ũ(x)eikFx

ṽ(x)eikFx

)
, (2.73)

Ψ1(x) =

(
f1epxeikFx

g1epxeikFx

)
, (2.74)

Ψ3(x) =

(
f3e−pxeikFx

g3e−pxeikFx

)
. (2.75)

The solutions must be continuous at the boundaries. Hence, the application of the
boundary conditions gives the Andreev levels:

Ψ1(0) = Ψ2(0),(
u2

v2

)
=

(
f1

g1

)
, (2.76)
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and

Ψ2(d) = Ψ3(d),
g3 f1

g1 f3
= e−i E

kF
d. (2.77)

Using the Eq. (2.70),

f1 =
∆1

E + ikFp
g1,

f3 =
∆3

E− ikFp
g3, (2.78)

resulting,
E− ikFp
E + ikFp

eiδϕ = e−i E
kF

d (2.79)

where δϕ = ϕ1 − ϕ2 is the phase difference between two superconducting regions.
Above equation can be written in a simpler way with the following trick:

θ = arccos
E
|∆| ,

reiθ = E + i
√
|∆|2 − E2. (2.80)

Finally, the Andreev levels are obtained as:

En

kF
d− 2 arccos

En

|∆| + δϕ = 2πn. (2.81)

It is also possible to rewrite Eq. (2.81) using ξ = εF/(kF∆):

En

|∆|
d

2ξ
− 2 arccos

En

|∆| + δϕ = 2πn. (2.82)

As we have seen in Eq. (2.71), for energies below the pairing gap, the wave–function
decays inside the superconductor. However, Eq. (2.82) describes bound states inside
the normal metal. The energy of the states inside the normal metal explicitly depends
on the phase difference between the superconductors. In the special case of δϕ = π,
we see that the result is trivial, E = 0. Here, it should be noted that the energies are
relative to the Fermi energy. Eq. (2.73) describes the bound states inside the normal
part of the junction. It can be rewritten as:
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Ψ2(x) =

 u2ei
(

kF+
E
kF

)
x

v2ei
(

kF− E
kF

)
x

. (2.83)

The BCS parameters u and v can be found from Eq. (2.76):

u2

v2
=

∆
E + i

√
|∆|2 − E2

. (2.84)

The normalization of Eq. (2.83) brings the condition |u2|2 + |v2|2 = 1. Therefore, it
can be found that the occupation of Andreev levels are:

|u2|2 = |v2|2 =
1
2

. (2.85)

The Andreev states are the results of the continuity of the quasi–particle wave func-
tion. The pairing field from each superconductor leak into the normal regime instead
of ending abruptly at the boundary. However, this leak does not convert the normal
metal into a superconductor, but it introduces the particle–hole correlation to the nor-
mal metal. When a thin layer of normal metal is between two superconductors, the
particle–hole correlation leads to Andreev states. Eq. (2.85) shows that the Andreev
states are occupied by half of a spin–up particle and half of a spin–down hole.

Eq. (2.83) shows that a particle incoming to the superconducting boundary reflects
back as a hole. The incoming particle has the momentum q+ = kF + E/kF. Therefore,
the incoming wave–packet has the group velocity vg = kF. The outgoing (reflected)
hole has the momentum q− = kF − E/kF resulting the group velocity vg = −kF. This
reflection is different than the ordinary reflection where the particle with the veloc-
ity vp = {vx, vy} would reflect back as a particle with the velocity vp = {−vx, vy}.
In the case we are considering, the particle is converted to a hole with the velocity
vh = {−vx,−vy}. This kind of reflection is called as retro–reflection which is a result of
particle–hole conversion.
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Modeling method and the numerical
framework

Two distinguished methods to simulate the many–body quantum state are the Den-
sity Functional Theory (DFT) and the Quantum Monte–Carlo (QMC) method. The
integrity of QMC has been tested over many years [21, 65–67]. It is a reliable tool to
capture the ground–state and thermodynamic properties of the ultracold Fermi gas.
However, when it comes to the excited states, such as the spin–imbalanced scenario, it
breaks down. QMC is also computationally demanding when it comes to simulating
large systems where particle number is on the order of a couple of thousands. In order
to examine the spin–imbalanced ultracold Fermi gas and its dynamics, DFT is proven
to be a reliable method [68].

3.1 Density functional theory

DFT relies on two theorems called Hohenberg–Kohn theorems, which was originally
published in 1964 [69]. The first Hohenberg–Kohn theorem states that the external
potential Vext acting on a system composed of many fermions is a unique functional of
the particle density. Since the kinetic energy T and the interaction between the particles
V are also functionals of the density, the energy of the many–body fermionic system
can be written as:

E[n(r)] = F[n(r)] +
∫

Vext(r)n(r)dr, (3.1)

where F[n(r)] = T[n(r)] + V[n(r)], and n(r) = 〈Ψ(r)〉 is the particle density. The
uniqueness of the Vext can be shown by taking two different external potentials Vext,
and V′ext. These different potentials result to Hamiltonians H, H′ and consequently
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describe the wave functions Ψ and Ψ′. Whether these two different wave functions
define the same density or not can be checked by variational method. It turns out
that two different external potentials can not describe the same ground state particle
density. Therefore, the ground state energy of the system is a functional of its ground
state particle density as in Eq. (3.1).

The second Hohenberg–Kohn theorem states that Eq. (3.1) delivers the ground state
energy given the employed particle density belongs to the ground state of the system.
For a certain density, n(r), we have a certain Vext, therefore, a certain H and Ψ. If n(r)
is the true ground state density described by Vext(r), by variational principle we have:

〈Ψ′| H |Ψ′〉 > 〈Ψ| H |Ψ〉 ,

E[n′(r)] > E[n(r)]. (3.2)

Therefore, the ground state density is genuinely the only function that minimizes
the energy.

The Kohn–Sham equations

The Kohn–Sham (KS) formulation is founded on Hohenberg–Kohn theorems [70]. The
idea is to consider a system of non–interacting fermions under the influence of the
same effective potential VKS instead of a system of interacting fermions. Of course,
the interacting and non–interacting systems of fermions yield different ground state
density configurations. However, it is possible to map all interaction terms and the
external potential term to VKS.

The energy functional in a many–body system can be written as:

E[n] = T[n] + Eint[n] + Eext[n], (3.3)

where

TKS[n] = −
1
2

N

∑
i=1

∫
Ψ?

i (r)∇2Ψi (r)dr (3.4)

is the kinetic energy of non–interacting particles. Eint[n] is the energy density func-
tional representing all of the interactions between the particles and Eext[n] is the energy
density functional belonging to the external potential.
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FIGURE 3.1: A schematic representation of equivalence between a real
fermionic system under a harmonic potential (left) and Kohn–Sham
framework (right). A set of interacting particles under a trivial external
potential Vext can be mapped to a set of non–interacting particles under

the influence of a more complicating external potential.

The minimization of the energy yields to:

εiΨi (r) =
δE

δΨ?
i (r)

,

εiΨi (r) = −1
2
∇2Ψi (r) +

(
δEint[n]
δn(r)

+
δEext[n]

δn(r)

)
δn(r)

δΨ?
i (r)

,

εiΨi (r) =

(
−1

2
∇2 + VKS(r)

)
Ψi (r). (3.5)

where VKS(r) = Vint(r)+Vext(r). It can be seen that Eq. (3.5) is similar to Schrödinger
equation. Eq. (3.5) describes a set of KS orbitals which defines the densities. Therefore,
it is technically possible to map the interactions between the particles to a single po-
tential known as the KS potential, VKS.

It should be noted that the KS potential itself depends on the densities and the
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densities are to be obtained by the KS potential. Therefore, one needs to solve this
system self–consistently.

3.2 Superfluid Local Density Approximation

Although the KS framework states that it is possible to map an interacting system
to a non–interacting one, it does not give any prescription on how to construct a KS
potential. In order to describe superfluid or superconducting systems within the DFT,
one needs to construct the energy density functional by means of particle density n(r),
kinetic density τ(r), and the anomalous density ν(r). Through the anomalous density,
the pairing interaction can be determined as:

∆(rσ, r′σ′) = − δE [n, ν]

δν?(rσ, r′σ′)
. (3.6)

The first attempt to construct a DFT formalism for superconductors has been done
with the motivation to capture the properties of high–temperature superconductors
[71, 72]. However, the non–local pairing potential ∆(rσ, r′σ′) gives rise to set of integro–
differential equations which are highly difficult to deal with in practice. To reduce
the difficulty of the problem, a local pairing potential ∆(r) may be used [73]. The
Superfluid Local Density Approximation (SLDA) has been developed over the years
[74–77] by employing such a local pairing potential and has been confirmed to be very
accurate [78–80].

In order to study the ultracold Fermi gas, one needs to solve Eq. (2.28) and find the
wave functions and corresponding energies. In coordinate space, the equation has the
following general form:(

h↑(r) ∆(r)
∆?(r) −h?↓(r)

)(
un,↑(r)
vn,↓(r)

)
= En

(
un,↑(r)
vn,↓(r)

)
. (3.7)

The solutions corresponding to Eq. (2.29) can be obtained by the transformation:
{un,↑(r), vn,↓(r), En} → {v?n,↑(r), u?

n,↓(r),−En}. The densities are defined as the follow-
ing:
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nσ(r) = ∑
n
|vn,σ(r)|2 fβ(−En), (3.8)

τσ(r) = ∑
n
|∇vn,σ(r)|2 fβ(−En), (3.9)

ν(r) = ∑
n

v∗n,↓(r)un,↑(r)
fβ(−En)− fβ(En)

2
, (3.10)

and the density functional that defines the ground state energy is:

Egs =
∫
E(n(r), τ(r), ν(r))dr. (3.11)

It should be noted that the arguments of the energy density functional is not limited
by three densities above. A better description of the system can be obtained with the
addition of current densities j(r) and density gradients ∇n(r).

In order to obtain such functional, the first candidate would be the BdG approach.
One may construct a functional with the following form:

EBdG =
h̄2τ

2m
+ gν†ν, (3.12)

where g is the coupling constant. The BdG method only includes the pairing in-
teraction between the Cooper pairs (see Eq. (2.21)). The contribution coming from the
self–energy (Hartree–Fock) term is disregarded. In the weak–coupling limit, this ap-
proach proved successful [64, 81]. However, the unitary limit has important differences
from the BCS limit. In particular, the pairing field in the unitary regime is comparable
to the Fermi energy which is contradictory to the BCS assumption, |∆| � εF. In this
regime, the scattering length a diverges, a→ ∞ and the approximate size of the Cooper
pairs ξ decreases and becomes similar to the average inter–particle distance k−1

F . This
makes the unitary Fermi gas a better system than a BCS–superfluid to consider local
pairing interactions. In the local density approximation, the anomalous density is di-
vergent: ν(r, r′) ∼ 1/ (|r− r′|). Therefore, to keep the pairing field ∆ = −gν finite, the
coupling constant is taken as g→ 0.

3.2.1 Spin–symmetric case

In order to extend the DFT to superfluids, it is instructive to start with the spin–
symmetric case n↑ = n↓. The contribution of self–energy can be estimated from the
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energy of non–interacting uniform Fermi gas which is described by the semi–classical
Thomas–Fermi model as:

EFFG =
3
5

εFN, (3.13a)

EFFG =
3h̄

10m

(
3π2

)2/3
n5/3V, (3.13b)

where N is the total particle number, and V is the volume of the system. The rele-
vance of this semi–classical model to the unitary Fermi gas lies in the relation between
the normal and superfluid states [17]. It is shown that for the unitary Fermi gas, where
the scattering length diverges, the ground state energy is related to the energy of the
free Fermi gas as in following:

Eunitary = EFFGξB, (3.14)

where ξB is the Bertsch parameter. Using this model as an educated guess, the
self–energy term is a functional of the density as ∼ n(r)5/3. By further dimensional
analysis, the proposed Superfluid Local Density Approximation (SLDA) functional is:

ESLDA = α
h̄2τ

2m
+ β

3h̄2 (3π2)2/3

10m
n5/3 + gν†ν, (3.15)

where parameters α, and β are obtained from fits to ab inito QMC results and exper-
imental results [68]. The parameter β is taken so to recover the Bertsch parameter:

β = −0.526. (3.16)

As it can be seen, the parameter α stands for the effective mass meff = m/α, which
will be elaborated on in the next section.

Regularization

One obstacle in framework of the SLDA is, as mentioned above, the divergence of
the anomalous and kinetic densities. In order to deal with that, an energy cutoff is
introduced to the densities:
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nσ(r) = ∑
|Ek|<Ec

|vk,σ(r)|2 fβ(−Ek), (3.17)

τσ(r) = ∑
|Ek|<Ec

|∇vk,σ(r)|2 fβ(−Ek), (3.18)

ν(r) = ∑
|Ek|<Ec

v∗n,↓(r)uk,↑(r)
fβ(−Ek)− fβ(Ek)

2
. (3.19)

According to the above equations, the densities are calculated from BCS parame-
ters whose eigenvalues are below Ec. Therefore, the resulting pairing field ∆ = −geffνc

is finite. As dictated by the self–consistency requirement of the pairing field (see
Eq. (2.33)), the coupling constant should be renormalized according to the regular-
ization scheme. In Ref.[75] it is introduced such a scheme where the renormalized
coupling constant, geff can be obtained from:

1
geff(r)

=
1

g(r)
− mkc(r)

2π2h2

(
1− kF(r)

2kc(r)
ln

kc(r) + kF(r)
kc(r) + kF(r)

)
, (3.20)

where kc is the momentum cutoff corresponding to the cutoff energy Ec. In Ref.[75]
it is shown that, for cutoff energies that are large enough compared to the Fermi energy,
the pairing field is no more a function of cutoff energy; it stays the same as the cutoff
is increased. Therefore, the above regularization procedure effectively gives the same
result with non–divergent densities compared to infinite cutoff.

3.2.2 Polarized case

In spin–imbalanced case, the local polarization is given by:

p(r) =
n↑(r)− n↓(r)
n↑(r) + n↓(r)

. (3.21)

With the introduction of non–zero polarization, the energy density functional in
Eq. (3.15) is generalized as the Asymmetric Superfluid Density Functional (ASLDA) [68]:

EASLDA =
h̄2

m

(
α↑(n↑, n↓)

τ↑
2
+ α↓(n↑, n↓)

τ↓
2
+ D(n↑, n↓)

)
+ geffν

†ν, (3.22)

with the definitions:
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α(p) = 1.094 + 0.156p
(

1− 2p2

3
+

p4

5

)
− 0.532p2

(
1− p2 +

p4

3

)
, (3.23a)

α↑(n↑, n↓) = α(p), (3.23b)

α↓(n↑, n↓) = α(−p), (3.23c)

D(n↑, n↓) =

(
6π2(n↑ + n↓)

)5/3

20π2

[
G(p)− α(p)

(
1 + p

2

)5/3

− α(−p)
(

1− p
2

)5/3
]

,

(3.23d)

G(p) = 0.357 + 0.642p2, (3.23e)

FIGURE 3.2: The extraction of the effective mass parameter α from three
cases p = −1, p = 0, and p = 1 indicated by green ticks. Resulting fit is

given in Eq. (3.23a). The figure is taken from Ref. [68].

and finally, the effective coupling constant is calculated by

α+
geff

=
m
h̄2

α+(n↑ + n↓)1/3

γ
− mkc(r)

2π2h2

(
1− kF(r)

2kc(r)
ln

kc(r) + kF(r)
kc(r) + kF(r)

)
, (3.24)

where α+ = (α↑ − α↓)/2. The parameter γ is obtained from QMC calculations to
reflect the |∆|/εF = 0.504 ratio of the unitary Fermi gas:

γ = −11.11. (3.25)
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The SLDA functional in Eq. (3.15) can be obtained by employing the ASLDA func-
tional (Eq. (3.22)) for p = 0 case. The parameter α is obtained from different QMC
results under polarizations (Eq. (3.23a)). Namely, the effective mass of majority and
minority particles in the limit of fully–polarized system and the spin–symmetric sce-
nario (see Fig. 3.2).

FIGURE 3.3: The comparison between the Superfluid Local Density Ap-
proximation (SLDA) and the ab initio fixed–node diffusion Monte Carlo
(FNDMC) calculations performed for a harmonically trapped unitary

Fermi gas at zero temperature. The figure is taken from Ref. [68].
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In Fig. 3.3 the comparison between ab initio QMC results and the (A)SLDA results
is presented. The normal state in (A)SLDA has been calculated by fixing ∆ = 0 in the
functional. The superfluid system is considered in the unitary regime, and the system
is in a harmonic trap. The comparison shows the high agreement between the methods
and validates the accuracy of the (A)SLDA method.

3.2.3 Time–dependent ASLDA

Time–dependent phenomena within the Kohn–Sham framework relies on the Runge–
Gross theorem which is essentially an analogue of Hohenberg–Kohn theorems for the
time–dependent Schrödinger equation [82]. The theorem states that a given initial state
Ψ0 evolving under the influence of two different external potentials Vext and V′ext results
to two different densities n(r, t) and n′(r, t). An important remark is that if the external
potentials are different only by a time–dependent constant c(t), the fermionic densities
would be n(r, t) = n′(r, t). The Runge–Gross theorem states that the resulting densities
are different only if the external potentials are different.

ASLDA can be extended to a time–dependent framework in order to describe the
dynamics of the unitary Fermi gas. Under the time–dependent ASLDA (TDASLDA)
framework, the BCS parameters u(r, t) and v(r, t) evolve in similar way to time–dependent
BdG equations [68]:

ih̄
∂

∂t


un,↑(r, t)
un,↓(r, t)
vn,↑(r, t)
vn,↓(r, t)

 =


h↑(r, t) 0 0 ∆(r, t)

0 h↓(r, t) −∆(r, t) 0
0 −∆?(r, t) −h?↑(r, t) 0

∆?(r, t) 0 0 −h?↓(r, t)




un,↑(r, t)
un,↓(r, t)
vn,↑(r, t)
vn,↓(r, t)

 ,

(3.26)
where hσ(r, t) = −∇2

2 − µσ +Uσ(r, t) is the single–particle part and Uσ(r, t) denotes
the time–dependent external potential, and they are real functions. The initial state to
evolve in time is the ground state described by ASLDA.

In the dynamical framework it is always interesting to examine time–reversal sym-
metry breaking phenomena. Therefore, the current density becomes an important
quantity. It is defined as:

jσ(r) =
i
2 ∑
|Ek|<Ec

[
v?n,σ(r)∇vn,σ(r)− vn,σ(r)∇v?n,σ(r)

]
fβ(−En). (3.27)



3.2. Superfluid Local Density Approximation 43

The effective mass parameter α is a function of local polarization p(r) (Eq. (3.23a)).
Since the effective mass is defined locally, in dynamic calculations, the Galilean invari-
ance has to be restored. For this reason, the TDASLDA functional has a different form
than the ASLDA functional. The TDASLDA functional is:

ETDASLDA =
h̄2

m

(
α↑

τ↑
2
+ α↓

τ↓
2
+ D

)
+ geffν

†ν +
(
1− α↑

) |j↑|2
2n↑

+
(
1− α↓

) |j↓|2
2n↓

. (3.28)

Another remark on the TDASLDA is on the stability of evolution. The time evo-
lution of a closed system necessitates the conservation of the total energy by the first
law of thermodynamics. However, the energy may not be conserved due to the energy
cutoff employed for the means of regularization. In order to examine the effect of the
truncated momentum space, let us turn to Bogoliubov transformation:(

c
c†

)
= B

(
γ

γ†

)
, (3.29)

where the transformation matrix is [60]:

B =

(
U V?

V U?

)
. (3.30)

The completeness of the transformation matrix, BB† = 1 ensures the fermionic
anti–commutation relations to be present in the quasi–particle basis. However, the
transformation spans over the whole Hilbert space. Therefore, in the presence of a
cutoff (e.g., momentum cutoff), the relation BB† = 1 does not hold anymore, and
the system does not strictly show fermionic behavior. Consequently, the particle and
anomalous densities constituted by the U’s and V’s become inconsistent, resulting in
non–conservation of the energy (defined through the densities). Nevertheless, this
effect depends on the strength of the pairing field and the size of the cutoff. For a
relatively short amount of time, the accuracy in the energy conservation is still high
[80].
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3.3 Numerical details

In a 1D system, the Hamiltonian given at Eq. (3.7) has the size of 2L × 2L, where L
is the lattice size. For the 3D case, the size of the Hamiltonian greatly increases and
becomes 2LxLyLz× 2LxLyLz. Moreover, in order to obtain meaningful results, the non–
equilibrium study of ultracold gases needs rather large lattices. The average lattice
size (or the box size) used in this study for time–dependent calculations is L3 = 40k−3

F .
This means ∼ 105 coupled partial differential equations that need to evolve in time.
Therefore, the study presented in this thesis is computationally highly demanding.
The simulations are performed using different supercomputers from around the world:
Tsubame (Japan), Piz Daint (Switzerland), Okeanos (Poland), Prometheus (Poland).
Within this study, the W–SLDA toolkit is used [83]. This study, among others, has been
used as a benchmark during the development of the toolkit.

The W–SLDA toolkit has a hybrid structure: It typically employs central processing
units (CPUs) in order to carry the static calculations, which are mainly diagonalization
of the BdG Hamiltonian. For a time–dependent studies using graphical processing
units (GPUs) increases the technical limits remarkably.

The toolkit employs a Cartesian lattice grid which can be constructed in one, two,
or three dimensions with periodic boundary conditions. The Laplacian and gradient
operators are calculated in the momentum space, using fast–Fourier–transform (FFT)
algorithms. From the eigenvectors of the Hamiltonian, it is possible to construct the
various densities, such as particle densities, anomalous density, etc. These densities
can be used to extract the observables of the system.

The static code utilizes multiple CPUs, although it can be supported by the use of
GPUs. The CPU codes are written in C99 language and employ the message passing
interface (MPI) for the parallelization to fasten the BdG matrix’s diagonalization. In
static calculations, the diagonalization of the matrix consumes the most time. The ma-
trix is separated between MPI processes using "block–cyclic distribution." The method
decomposes the matrix into repeating blocks, dividing the matrix into different pro-
cesses (see Fig. 3.4) and reducing the dimensionality in order to gain speed without
losing accuracy [83].

After decomposing the matrix into cyclic blocks, it is diagonalized using ScaLA-
PACK (CPU based) or ELPA (GPU based) libraries. The detailed information on ELPA
library can be found at Refs. [83, 84]. One diagonalization corresponds to one iteration
of the code. The diagonalization begins with an initial guess for the problem (e.g., the
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FIGURE 3.4: The comparison between block, cyclic and block–cyclic (bc)
methods. Bc method is a comprimise between the other methods. For

more details see Ref. [83].

particle and anomalous densities for the uniform case). During the diagonalization,
the total energy of the system is minimized:

〈Ω〉 =
〈

H − ∑
σ={↑,↓}

µσNσ

〉
. (3.31)

By minimization, convergence in both energy and particle number is achieved. The
convergence is reached when the value of the parameter (e.g., energy or particle num-
ber) is changed only by a tolerance after the previous iteration. For example, in the
case of energy convergence, the algorithm stops when |Efinal − Efinal−1| ≤ 10−6 where
Efinal is the total energy of the system after the last iteration, and Efinal−1 is the total
energy one iteration before the last one.

The time–dependent code solves the following form:

i
∂Ψn(t)

∂t
= H(Ψn, t)Ψn(t), (3.32)

where the Hamiltonian and the wave functions have the form in Eq. (3.7). The
time–evolution is performed using the Adams–Bashforth–Moulton (ABM) algorithm.
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Within this scheme, the initial definitions are:

f (y, t) =
∂y(t)

∂t
, (3.33)

where

y(t) ≡ Ψn(r, t),

f (y, t) ≡ i−1 (H(Ψn, t)− 〈H〉n)Ψn(t). (3.34)

Here, 〈H〉 is the instantaneous quasi–particle energy [79, 83]. From these definitions,
the ABM algorithm has the following predictor–corrector structure:

• 4th order predictor:

yp
k = yk−1 +

55
24

∆t fk−1 −
59
24

∆t fk−2 +
37
24

∆t fk−3 −
9

24
∆t fk−4. (3.35)

• 5th order corrector:

yk = yk−1 +
251
720

∆t f (yp
k , k∆t)+

646
720

∆t fk−1−
264
720

∆t fk−2 +
106
720

∆t fk−3−
19

720
∆t fk−4.

(3.36)

In Fig. 3.5 the job distribution diagram of W–SLDA toolkit is presented. Most of the
"run–time" is occupied by the (cu)FFT (41%) and the multiplication of the wave func-
tions by the momenta vectors (11%). During these two operations, the Lapcaian and
gradients of wave functions are calculated. Therefore, this process alone takes more
than half of the run–time. Another time–consuming procedure is the MPI communi-
cation (∼ 20%) which strongly depends on the amount of data processed by the GPU
each time step.
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FIGURE 3.5: Profiling of TDSLDA code executed on 512 GPUs (Piz Daint).
For more details see Ref. [83].





Chapter 4

Dynamic creation of spin–polarized
impurity

The superfluid systems are separated from single–particle excitations by the pairing
gap. Therefore, the polarized particles who can not form Cooper pairs are expelled
from the superfluid. The question whether there is a stable polarized superfluid con-
figuration has gathered a lot of attention [25–38]. This chapter introduces the ferron, a
spin–polarized impurity which stores the local polarization inside the superfluid sys-
tem. In particular, as the title suggests, the creation of the ferron by a time–dependent,
spin–selective external potential is shown and the stability of the ferron is discussed.

To investigate the spin–imbalance in ultracold Fermi gas, we start with a cubic 3D
simulation box where the periodic boundary conditions are imposed. The density of
the box is set accordingly to obtain kF = (3π2n)1/3 ≈ 1, where n is the particle density
inside the box. The regime we consider is the unitary Fermi gas (UFG). Since it has the
strongest pairing field, the UFG offers a larger window to admit magnetic impurities
without destroying the superfluidity [20, 22, 23]. As it is described in the previous
chapter, we employ the TDASLDA method to simulate and capture the dynamics of
the UFG. We start with minimizing the energy for the spin–balanced case and obtain-
ing a uniform solution by solving the static equations. Next, we switch to dynamics
where a time–dependent local external potential is introduced. The potential has the
Gaussian form in real space and is spin–selective: attractive for one spin component
and repulsive for the other. Therefore, it locally breaks the Cooper pairs (see Fig. 4.1).
The external potential has the following form:

Vi(r, t) = λi A(t) exp

[
−

x2 + (1− εy)y2 + (1− εz)z2

2σ2

]
, (4.1)

where λi = ±1 describes if the potential is attractive or repulsive. It is set as λ↑ = 1
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and λ↓ = −1. Therefore, the potential attracts the spin–down particles and repels the
spin–up particles. The amplitude, A(t) is a function of time. The external potential
used to break the Cooper pairs excites phonons in the system that interacts with the
particles. To avoid this effect as much as possible, we adiabatically turn the potential
on, keep it on for some time, and slowly turn it off. The amplitude is:

A(t) =


A0 s(t, ton), 0 6 t < ton,
A0, ton 6 t < thold,
A0 [1− s(t− thold, toff − thold)], thold 6 t < toff,
0, t > toff,

(4.2)

where

s(t, w) =
1
2
+

1
2

tanh
[

tan
(

πt
w
− π

2

)]
, (4.3)

is the switching function used in order to introduce the potential adiabatically. The
typical maximum strength of the external potential is, A0 = 2εF. The parameters εy,
and εz are introduced to break the spherical symmetry of the potential, εy,z = 10−6.
Finally, σ is the width of the potential in units of lattice spacing, k−1

F .
The time–evolution of the total energy of the system under such potential is given

in Fig. 4.1. It can be seen that the energy only changes when the time derivative of the
external potential is non–zero, in other words, when the potential is performing the
necessary work to break the Cooper pairs. Otherwise, the energy is conserved, proving
the stability of the simulations. We, typically, set ton = toff = 25tεF and the total
application duration of the potential is tpot = 150tεF. The excitation energy showed in
Fig. 4.1 is due to both the newly created unpaired particles and the excited phonons in
the system.

During the pair–breaking process, the Fermi surfaces corresponding to different
spin components shift inside the volume where the potential is applied. This shift
causes oscillations in the pairing field [40], and eventually induces a nodal shell. Inside
this shell, the phase of the pairing field is shifted by π. In Fig. 4.2, it can be seen that the
excess particles occupy the states at the vicinity of the nodal shell. This is effectively
analogous to the superconductor - ferromagnet - superconductor (SFS) junctions where
the ferromagnet part is composed of one spin component and the phase of the pairing
field changes by π across the junction [40]. It is because of this similarity; this particular
spin–polarized shell is named as ferron.
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FIGURE 4.1: The schematic of the spin–selective external potential (left
subfigure) and an example of time evolution of the total energy of the

system (right subfigure). Both images are taken from Ref. [46].

In Fig. 4.3 two snapshots during the time evolution are presented. The Gaussian
potential is applied to the center of the simulation box. The 3D results are presented as
cross–sections from the center of the box. The upper subfigure shows a configuration
while the external potential is active. It can be seen that, at that time, the phase inside
the region where the potential is applied is shifted by π with respect to the bulk value.
This creates a nodal shell where the magnitude of the pairing field goes through zero
while changing its sign due to the phase shift. The local polarization, p(r) = n↑(r)−n↓(r)

n↑(r)+n↓(r)
shows that the majority of the unpaired particles occupy the region where |∆(r)| → 0.
The spin–up particles that are repelled by the external potential create a uniform non–
zero polarization in bulk.

After the potential is turned off, the pairing field, which was previously suppressed,
recovers itself because of the proximity effect. However, its phase is still shifted, and
the nodal surface remains. If the radius of the nodal shell is close to the coherence
length, the pairing may not recover itself to its bulk strength. As a result, this creates a
non–zero polarization even in the core of the object. This non–zero polarization in the
center is enhanced by the phonon scatterings. However, the majority of the unpaired
population is gathered at the nodal shell (see lower subfigure of Fig. 4.3).

One of the essential properties of the ferron is its stability. Once the nodal shell is
formed, the external potential is removed from the system. If the system parameters
are adjusted appropriately, the simulations show that the object is stable by itself up to
tεF ≈ 1000 without hinting at any sign of decay.

The stability of the ferron is affected by various system parameters. The first check
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FIGURE 4.2: Left subfigure: The behavior of the pairing field within a
SFS junction. The phase of the pairing field is shifted by π across the
junction. Right subfigure: The structure of the polarized shell in 3D. On
the left–hand side of the figure the local spin polarization, p(r) and on the

right–hand side the local pairing strength, |∆(r)| is shown.

is the effect of the size of the simulation box, L3. Fig. 4.4 shows that for a box size
of L3 ≈ (19ξ)3, the nodal shell is unstable, and the system eventually recovers its
initial completely paired configuration with the extra presence of excited phonons.
This instability is due to the phonons interacting with the unpaired population. When
the box size is too small, the perturbations due to the external potential are enhanced
because of the periodic boundary effects. The enhanced phonon scatterings lead to
the destruction of the polarized nodal shell. In Fig. 4.4 it can be seen that a box size
of L3 = (31.42ξ)3 allows enough distance between the periodic potentials and the
impurity is stable. Moreover, it can be seen that the amplitude of deviations from
δϕ = π line decreases for a larger box such as L3 = (47.12ξ)3.

The next parameter is the size of the Gaussian external potential, σ. To test the
stability due to the potential size, simulations with different sizes ranging from 2.36ξ

to 7.37ξ are performed. Fig. 4.5 (upper subfigure) shows for small sizes, such as σ =

2.36ξ, the ferron is destroyed after the potential is turned off. If the polarizing potential
is too small, the pairing field inside the nodal shell is weaker than the bulk pairing
strength. This is because the oscillations of the pairing field are on the order of the
coherence length ξ. In such a case, the unpaired particles may tunnel across the droplet
leading to the decay of the structure. Moreover, since the dynamically created system
is far from equilibrium, the phonon scatterings may contribute to the decay. Therefore,
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FIGURE 4.3: Two snapshots of the dynamical creation of the ferron is pre-
sented. The upper subfigure is a snapshot while the potential is applied,
and the lower subfigure is after the potential is turned off. The potential
is turned off at tεF = 150. In both figures, on the left half–box, the mag-
nitude of the pairing field is presented, while on the right half–box, the
phase of the pairing field is given. The right image in both figures is the

local spin–polarization.
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FIGURE 4.4: The effect of the periodic box size on the creation of a stable
droplet. The polarization and the phase difference are calculated at the
center of the box as a reference to the bulk values. Upper subfigure: Panel
a) shows the time evolution of the relative local polarization for different
box sizes. Panel b) shows the time evolution of the phase difference. The
vertical dashed lines represent when the external potential is completely
turned off (tεF = 150). The horizontal dashed line in the panel b) is a guide
to the eye, showing δϕ = π. Lower subfigure: This figure demonstrates
the relative phase difference and the polarization. The bulk values are

taken from the edge of the box.
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the pairing field inside the shell plays the part of an effective potential barrier to protect
the shell from collapsing. In Fig. 4.5 we numerically confirm for sizes σ & 3ξ, the
pairing field inside the nodal shell prevents the collapse.

In Fig. 4.5 (upper subfigure), for wide potentials, such as σ = 7.07ξ, we, again, en-
counter with the instability, which is attributed to the thold parameter. Fig. 4.6 (upper
subfigure) shows for a potential with σ = 7.07ξ, the extended application duration of
the potential is successful on the creation of the nodal shell. A wider potential means
a larger surface for the nodal shell that needs to be occupied by a larger number of
unpaired particles. Extended application duration of the polarizing potential eventu-
ally causes the necessary shift in the Fermi surfaces to generate the oscillation of the
pairing field.

Another system parameter is the maximum strength of the Gaussian potential, A0.
In Fig. 4.6 (lower subfigure) the effect of different amplitudes is shown. For weak
amplitudes, such as A0 = 1εF, the potential is not strong enough to create the nodal
shell for a given thold. On the other hand, large amplitudes, such as A0 = 4εF, the
potential excites background phonons which interact with the polarized population,
causing instability and eventually leading to a possible decay of the nodal shell.

The final system parameter is the switching on/off rates of the external potential,
tswitch. It describes the effect of adiabaticity on the creation of the ferron. Fig. 4.7 shows
the ferron is stable even with a sudden introduction of the potential. However, it can
be seen that a more adiabatic process transfers less energy to the system. Such a case
excites fewer phonons than less adiabatic cases, resulting in a configuration closer to
equilibrium. Therefore, more adiabatic processes provide more stable structures.

4.1 Stability of the ferron

So far, we have investigated various system parameters that can be tuned to obtain a
stable ferron. Among those parameters, the only physical limitation is the minimum
size of the ferron. As mentioned above, the pairing inside the nodal shell behaves as an
effective potential barrier, preventing the collapse of the nodal shell. Since the healing
of the pairing field occurs on the order of the coherence length, a ferron smaller than a
certain size can not exist.

To investigate ferron’s stability, we turn to 1D case to see the geometry and dimen-
sionality effects. To simulate a 1D UFG system, instead of TDASLDA, we have used
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FIGURE 4.5: The time evolution of the ferron is presented. The box size is
L = 31.42ξ. Upper subfigure: Small, medium, and large potential widths
are compared. In panel a), the local polarization from the center of the box
is presented. In panel b), the phase difference between the center of the
box and the bulk is shown. It can be seen if the potential is too narrow (σ =
2.36ξ), the nodal shell does not survive. In the case of wide potential (σ =
7.07ξ), the given system parameters, such as the amplitude of the potential
or the application duration, are not enough to break enough Cooper pairs
to create a phase shift. Upper subfigure: The stability of the ferron in
intermediate potential sizes are shown. The presentation of the results is

the same as the above subfigure.
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FIGURE 4.6: Upper subfigure: The effect of the duration of the applica-
tion of the external potential is presented. The amplitude of the potential
is A0 = 2εF and the width is σ = 7.07ξ. It can be seen that for wide poten-
tials, increased duration of the application helps to break enough Cooper
pairs to create the necessary shift in the phase between the core and the
bulk. The vertical dashed lines represent the time where the external po-
tential is completely turned off for different cases. The horizontal dashed
line is a guide to the eye, showing δϕ = π. Lower subfigure: The effect
of the amplitude of the external potential. The box size is L = 37.7ξ, and
the width is σ = 4.71ξ. Panel a) shows the local relative polarization, and
panel b) shows the phase difference from the center of the box to the bulk
value. Among three selected amplitudes, only A0 = 2εF produces a stable
ferron. The vertical dashed line represents when the external potential is

completely turned off (tεF = 150).
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FIGURE 4.7: The creation of ferron with different switching on/off rates,
tswitch. Panel a) shows the local polarization in the core of the potential
with respect to the bulk. Panel b) shows the phase difference. In panel c)
the effect of different switching on/off rates is presented. It can be seen
that in all cases, a stable ferron is successively produced. The vertical
dashed lines represent the time where the external potential is completely
turned off (tεF = 150), and the horizontal dashed line is a guide to the eye,

showing δϕ = π.
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the time–dependent Bogoliubov de–Gennes (TDBdG) approach since TDASLDA is not
suited for the 1D case. TDBdG equations are:

i
∂

∂t

(
un,λ(x, t)

vn,−λ(x, t)

)
=

(
hλ(x, t) λ∆(x, t)

λ∆(x, t)∗ −h?−λ(x, t)

)(
un,λ(x, t)

vn,−λ(x, t)

)
, (4.4)

where λ = ±1 denotes spin indices, hλ(x, t) = −1
2

d2

dx2 + gn−λ(x, t) + Vλ(x, t) and
∆(x, t) = gν(x, t) (nλ is the density of spin–λ particles, ν is the anomalous density).
The coupling constant g has been adjusted to obtain the pairing strength in unitary
regime: ∆/εF ≈ 0.5, εF = k2

F/2. In time–dependent 1D calculations, one may generate
a similar form of spin–polarized impurity:

Vλ(x, t) = 1.8 f (t)λεF exp(− x2

2σ2 ), (4.5)

where

f (t) = sin2(
πt
2T

)θ(T1 − t)

+ θ(t− T1)θ(T2 − t) (4.6)

+ cos2(
π(t− T2)

2T
)θ(t− T2)θ(T1 + T2 − t),

describes the switching–on/off rates.
The results presented in Fig. 4.8 show that the nodal points repel each other. This

indicates there is superflow present in the system. A non–zero current implies that the
pairing field has a non–zero imaginary part ∆(r) ∼ |∆|eiq·r where |j| ∼ q. Such form
of the pairing field may be attributed to Fulde–Ferrel (FF) type pairing. Note that the
polarization effectively travels with the nodal points in opposite directions. In Fig. 4.9
it can be seen that the energy of a system with two polarized nodal points decreases as
the distance between those two points increases.

The repulsion of the nodal points in 1D does not happen in 3D simply because ex-
panding the nodal area costs energy. Such an expansion means spontaneous breaking
of more Cooper pairs which is not possible since there is no internal mechanism to
provide that. Therefore, the ultimate size of the impurity is dictated by the number of
broken Cooper pairs due to the external potential. Moreover, as discussed above, the
contraction of the nodal shell is prohibited by the pairing field inside. Consequently,
the energy of the polarized shell can be written as an interplay between a surface term,
Eshell and a volume term, Evol:
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FIGURE 4.8: The snapshots of time–dependent 1D calculations. The left–
hand side shows the strength of the pairing field relative to the Fermi en-
ery. The right–hand side shows the phase of the pairing field in units of π.
The parameters used in Eq. (4.4) are kFσ = 4.441, T = T1 = 29.55ε−1

F ,
and T2 = 49.25ε−1

F . The external potential is completely turned off at
tεF = 78.8. Both snapshots are taken after the external potential is turned

off.
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FIGURE 4.9: The energy of the 1D system with the presence of two nodal
points. On the x–axis, the distance between two nodal lines in units of
coherence length is presented. Y–axis shows the total energy of different
configurations with respect to the free Fermi gas. It can be seen that the

energy decreases as the distance between the nodal points increases.

Eferron = Eshell + Evol. (4.7)

The stability of the nodal shell is the direct consequence of the polarized popula-
tion it harbors. Otherwise, in an unpolarized scenario, where the phase difference is
imprinted, the nodal shell would decay as there is no mechanism to prevent that. The
origin of the nodal shell is due to the splitting of Fermi spheres belonging to different
spin components. Because of the proximity effect, the Andreev levels appear inside
the nodal shell. It is the Andreev states occupied by locally polarized particles that
keep the nodal shell stable. Therefore, the ferron can be considered as a set of Andreev
states responding to the environment as a whole.

It is also necessary that the system is superfluid, and the strength of the pairing field
neighboring the nodal shell is comparable on both sides. In scenarios where T > Tc,
the polarized cluster would diffuse simply by obeying the Fick’s Law, Js = −Ds∇ns,
where ns(r) = n↑(r)− n↓(r) is the spin density, Js is the spin current, and Ds is the spin
diffusion coefficient. The existence of the pairing field provides a natural potential bar-
rier, which provides the Andreev levels that keeps the polarized population inside the
nodal shell. It should be noted that the external potential is applied only for a limited
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time amount to break the Cooper pairs and generate the nodal shell. Provided that it
is not a "violent" potential, it does not affect the stability of the impurity after the ex-
ternal potential is turned off. The ferron is solely a result of spin–polarized superfluid
system properties, i.e., the only needed ingredients are the spin–imbalanced particles
to occupy the Andreev states and the pairing field, which prevents the object from
collapse. As discussed above, in 1D, where the pairing field has an FF–like structure,
∆(x) ∼ |∆|eiqx, the nodal points are unstable. On the other hand, in 3D and 2D, as
we shall discuss, the pairing field has a Larkin–Ovchinnikov (LO) type of structure,
∆(r) ∼ |∆| cos (q · r) which does not induces currents as in FF case. Therefore, from
this perspective, the ferron can be considered as a LO droplet. Another note is the dy-
namic creation of the ferron results in an excited system. Therefore, it does not suggest
a local minimum in the free energy. Instead, by stability, what is meant is a long–living
configuration without any sign of decay.

4.2 Basic dynamic properties of ferron

4.2.1 Deformed ferron

The deformation parameters, εy, and εz used in Eq. (4.1) do not provide a visible struc-
tural change when kept relatively minimum. By changing the parameters, it is pos-
sible to create an initially deformed ferron. To achieve that, the parameters are set
to εy = 0.44, and εz = 0.64. Fig. 4.10 (left subfigure) shows the time–evolution of
such configuration. It can be seen that the nodal shell is initially deformed as with the
external potential. After the potential is turned off, it is observed that the deformed
impurity eventually forms a spherically symmetric configuration, aside from losing its
stability. The reason is simply an elliptic configuration has both increased surface and
curvature, which results in higher energy. During its time evolution, a deformed ferron
rearranges itself into a spherical form to decrease its energy.

4.2.2 Concentric ferrons

Studies in SFS junctions show that the pairing field may change its sign multiple times
depending on the width of the ferromagnet layer [40, 85]. Since ferron is analogous to
the SFS junctions, a similar effect is expected. To examine this effect, a wider Gaussian
potential is applied. In Fig. 4.10 (right subfigure), it is visible that after the removal
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FIGURE 4.10: Left subfigure: Two snapshots on dynamic creation of a de-
formed ferron. The box size is L = 47.12ξ. The amplitude of the Gaussian
potential is A0 = 2εF with the width of σ = 4.71ξ. The spherical shape
is deformed by the parameters εy = 0.44, and εz = 0.64 used in Eq. (4.1).
The top and bottom rows show the cross sections of the pairing field along
three perpendicular planes. The top row shows the configuration just be-
fore the external potential is turned off. The bottom row shows the initially
deformed impurity rearranges itself to a spherical form. The black dashes
are guide to the eye. Right subfigure: Snapshot of the attempt on creating
concentric ferrons. The images are taken at tεF = 392 which is approxi-
mately 220tεF after the potential is turned off. The box size is L = 50.26ξ.
The amplitude the width of the potential are A0 = 3.5εF and σ = 11.78ξ

respectively. Both figures are taken from Ref. [46].

of the external potential, the pairing field changes its sign multiple times. However,
as discussed above, the process of inducing such a large ferron, with respect to the
box size, generates phonon excitations that interact with the impurity. The box size
considered is L = 50.26ξ and the width of the potential is σ = 11.78ξ. In order to study
the dynamic creation of concentric ferrons in detail, a much larger box is needed.

4.2.3 Collision of two ferrons

It is possible to create a moving ferron by dragging the potential along a selected axis.
To drag the polarizing potential, Eq. (4.1) is modified in the following way:

Vs(r, t) = λs A(t) exp

[
−
(x0 + vdragt)2 + y2 + z2

2σ2

]
, (4.8)



64 Chapter 4. Dynamic creation of spin–polarized impurity

FIGURE 4.11: Four scenarios of ferron collision. In all cases, the box size
is approximately 50x31x31ξ3. The width of the polarizing potentials is
σ = 3.14ξ with the amplitude A0 = 2εF. The external potentials move
towards each other with the velocity v = 0.45vF. The potentials are com-
pletely removed at tεF = 150. On left–hand side the configurations right
after the potentials are removed are presented. On the right–hand side the
configurations at tεF = 766 can be seen. The first row shows the head–on
collision of two identical ferrons. The second row shows the peripheral
collision of identical ferrons. The third row consists head–on collision of
ferrons of opposite polarization. Finally the fouth row shows the periph-

eral collision of ferrons of opposite polarization.
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where vdrag sets the velocity that the potential is dragged. After the external poten-
tial is removed from the system, the ferron continues its motion with a slower velocity
which drags the potential. This drop in the velocity is due to the removal of the exter-
nal potential.

In Fig. 4.11 four different scenarios for ferron collision are presented: 1) Head–
on collision of identical ferrons. 2) Peripheral collision of identical ferrons. 3) Head–
on collision of ferrons of opposite polarization. 4) Peripheral collision of ferrons of
opposite polarization. The robust structure of the ferron can be seen from the collisions
of identical ferrons. In both cases, nodal shells fuse and create a bigger, single ferron.
This new configuration is initially deformed. However, from the above studies, one
may expect that the deformed ferron eventually will rearrange itself into a spherical
shape. This process is technically difficult to capture since the superfluid background
is highly excited after the creation and dragging of two ferrons.

It is also possible to examine the collision of two oppositely polarized ferrons. In
such a scenario, Fig. 4.11 shows the ferrons annihilate each other. It can be seen that the
superfluid gas has almost returned to its initially spin–balanced uniform configuration,
and the nodal shells are destroyed.

4.3 Robustness of the phenomenon

4.3.1 TDASLDA vs TDBdG

The creation and the stability of the ferron are related only to the pairing field and the
spin imbalance. It is not a trademark of a particular framework. The study of time–
dependent creation of ferron has been done within the TDASLDA framework, which
has been tested numerous times for spin–polarized UFG [79, 86, 87]. To show that the
creation of the ferron does not depend on a particular method, a comparison with the
TDBdG approach has been made. To induce the nodal shell, the same method as above
(Eq. (4.1)) has been used. It is confirmed that a ferron can be created within the TDBdG
approach (see Fig. 4.12). The only difference between the two methods comes from the
amplitude of the external potential. The maximum strength for the external potential
that is typically used in the TDASLDA approach, A0 = 2εF, creates stronger phonon
excitations in the TDBdG approach. This eventually leads to an unstable configuration.
Therefore, to obtain a stable configuration, the maximum amplitude of the external
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FIGURE 4.12: Left subfigure: The ferrons existence and stability under
the BdG approach is shown. The box size is L = 31.42ξ. The maximum
strength of the potential is A0 = 1.5εF and the width of the Gaussian po-
tential is σ = 4.71ξ. The potential is applied from the beginning until
tεF = 150. The total excitation energy (Eex = E(t)− E(0)) and the phase
difference between the bulk and the core δϕ/π are shown as functions of
time. The inset shows the internal structure at the time indicated by the
dashed line, tεF ≈ 225. Right subfigure: In 1D calculations the energy cost
to keep two nodal lines stable in a polarized system are shown by the red
solid line. The dashed lines indicate the pairing energy for the same polar-
ized configuration. The dotted lines show the pairing energy for uniform

configuration. Both figures are taken from Ref. [46].

potential is lowered to A0 = 1.5εF. Besides technical matters, the choice of functional
does not affect the ferron’s stability.

4.3.2 UFG vs BCS

The crucial element to create a ferron is the pair–breaking process. The Chandrasekhar–
Clogston limit sets a maximum chemical potential difference between spin compo-
nents, where the superfluidity still persists [39]:

µ̃ =
(µ↑ − µ↓)

2
=

∆0√
2

, (4.9)

where ∆0 is the strength of the pairing field in an unpolarized case. Higher values
of the chemical potential difference result in a first–order phase transition from a su-
perfluid to a normal phase. Eq. (4.9) implies that the maximum polarization that can
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be induced in a system is related to the strength of the pairing field. Since the uni-
tary regime has the strongest pairing among Cooper pairs, according to Eq. (4.9) one
may induce high values of chemical potential difference, therefore, spin–polarization
without destroying the superfluidity.

However, the creation of ferron is not limited to the UFG regime. Fig. 4.12 shows
that as the system goes from strong coupling to weak coupling regime, the energy cost
to induce ferron scales linearly, Eferron ∼ |∆|. On the other hand, the condensation
energy scales as Econd. ∼ |∆|2 which is overcome by the energy to induce ferron in the
weak coupling regime.

Moreover, a weaker pairing means a larger coherence length. Since the minimum
size of the ferron is on the order of several coherence lengths, studies in the deep–BCS
regime would require larger simulation boxes. This effect sets a technical limit on 3D
time–dependent studies. In conclusion, a strong coupling regime is found to be more
robust to create ferrons.





Chapter 5

The internal structure of the ferron

5.1 Andreev states inside the ferron

The ferron consists of particles of the same spin occupying the Andreev states inside
a nodal region where the superfluid pairing field changes its sign. The Andreev states
in a superconductor–normal–superconductor junction are described by Eq. (2.82). It is
possible to extend the formula for the spin–imbalanced case, i.e., µ↑ 6= µ↓:

E±,n

|∆|
d

2ξ
− 2 arccos

E±,n

|∆| + δϕ = 2πn, (5.1)

where E±,n = En ± δµ
2 , δµ = µ↑ − µ↓, and d is the distance which the particle

travels inside the normal part, from one superconductor boundary to the other. In a
2D ultracold Fermi gas, the nodal region has the shape of a circular ring (see Fig. 5.1).
As it can be seen at Fig. 5.1 (right subfigure), the Andreev reflection inside the ferron
should be considered in two different regions, since the phase difference δϕ may be
either π or 0. Therefore, Eq. (5.1) should be considered separately in those regions:

E±,n

|∆|
d0

2ξ
− 2 arccos

E±,n

|∆| = 2πn, (5.2)

E±,n

|∆|
dπ

2ξ
− 2 arccos

E±,n

|∆| = π (2n− 1) , (5.3)

where, dπ denotes the trajectory length where δϕ = π and d0 denotes the trajectory
length where δϕ = 0:
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FIGURE 5.1: Right subfigure: A 2D schematic of ferron. The Andreev
states are localized at the vicinity of the nodal line (red area), where
the phase of the pairing field shifts by π. The image is taken from
Ref. [88]. Left subfigure: A 2D schematic demonstrating two different

semi–classical trajectories for particles occupying Andreev states.

d0 = 2
√

R2 − r2, (5.4)

dπ =
√

R2 − r2 −
√

R2
c − r2. (5.5)

Here Rc is the radius which the phase is shifted by π, R is the total radius of the
ferron, and r is the radial distance of the trajectory. It is instructive to associate each
trajectory with angular momenta:

L = r× p, (5.6)

where p is the momentum. Hence, the angular momentum, which is perpendicular
to the plane where the ferron resides, can be expressed as:

Lz = h̄kFr. (5.7)

Here, we assume the quasiparticle momenta are on the order of Fermi momen-
tum as a result of the Andreev approximation. Consequently, the trajectory lengths in
Eq. (5.4) can be rewritten in terms of angular momenta:
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d0

4ξ
=

R
2ξ

√
1− L2

z(r)
L2

max
,

dπ

4ξ
=

R
√

1− L2
z(r)

L2
max
− Rc

√
1− L2

z(r)
L2

c

4ξ
, (5.8)

where Lmax = kFR, and Lc = kFRc. Hence, it is possible to rewrite Eq. (5.1) explicitly
for these two regions:

xnα0 − arccos xn = πn, (5.9)

xnαπ − arccos xn = π

(
n− 1

2

)
, (5.10)

where xn = E±,n/|∆|, απ = dπ/4ξ, and α0 = d0/4ξ are introduced to simplify the
equations to a dimensionless manner. At first inspection, it can be seen that for the
former equation, the solutions come in pairs of xn = −x−n−1 and for the latter one
xn = −x−n (where n ≥ 0).

Fig. 5.2 (left subfigure) shows the solutions of Eq. (5.9) for various n values. This re-
gion, where δϕ = 0, admits angular momenta, Lz, ranging from Lc, to Lmax. Therefore,
the dimensionless parameter α0 has values from 0 to

√
R/2ξ (see inset of Fig. 5.2). The

limit, α0 = 0 is the high–energy limit where the length of the junction is negligible. In
this limit, Eq. (5.9) yields to a trivial result: E±,n = |∆|. The low energy limit, where
E±,n << |∆|, corresponds to the case where α0 >> 1. This, implies the large ferron
limit, where R >> ξ. In this limit, the inverse trigonometric function in Eq. (5.9) can
be written as arccos x ≈ π/2− x. Therefore, the Andreev levels are quantized as:

E±,n

|∆| =
π

1 + α0(Lz)

(
n +

1
2

)
. (5.11)

The lowest energy solution in the case of a large ferron, Rc >> ξ, α0 ≈
√

R/2ξ,
and for n = 0, can be found as:

E±
|∆| =

π/2

1 +
√

R
2ξ

. (5.12)

The region where δϕ = π spans a larger area than the previous region. Namely, the
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FIGURE 5.2: The solutions for Eq. (5.9) (left subfigure) and Eq. (5.10) (right
subfigure). It can be seen that there always exist a solution for both equa-
tions. Insets in both figures shows the behavior of the dimensionless pa-

rameter, α as a function of the angular momentum, L.
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angular momentum here ranges from 0 to Lc. As a result, this region harbors the ma-
jority of the Andreev states. In this region, quantization of Andreev states is described
by Eq. (5.10). It can be seen that Eq. (5.10) always admits solutions for x = 0, no matter
the angular momentum is (see Fig. 5.2, right subfigure). Therefore, the Andreev states
formed within the region where δϕ = π have energies equal to Fermi energy, En = εF.
Moreover, in the case where απ = π/2, and n = ±1, the region involves the high
energy states where E(n = ±1) = |∆|. Fig. 5.2 shows that in the case of απ >> 1,
there are numerous low energy solutions for Eq. (5.10). By making the approximation,
arccos x ≈ π/2− x, the energy of the Andreev states can be expressed as:

E±
|∆| =

π

1 + απ(Lz)
n. (5.13)

However, as can be seen from the inset of Fig. 5.2, απ > 1 case is valid only at the
limiting angular momenta. Therefore, we can conclude that the majority of Andreev
states inside the δϕ = π region have energies on the order of the Fermi energy.

5.2 The size of the ferron

In the previous chapter, ferron’s dynamical creation and stability were verified by
means of 3D time–dependent numerical calculations. To study its internal structure
and characteristics, we focus on 2D static solutions which can be generalized to the 3D
case.

In static calculations, there is no way to break the Cooper pairs, which is a crucial
process for the dynamic creation of the ferron. Different from the dynamic case, in
the static case, the global polarization, P =

N↑−N↓
N↑+N↓

is non–zero. The nodal circle that
hosts the unpaired particles is imprinted inside the simulation box by hand. The phase
difference π is achieved by forcing the pairing field to have the following form:

∆(r) =

{
−∆, r < R1,

∆, R2 < r.
(5.14)

Above procedure creates a nodal line in between R1 and R2. Consequently, the
unpaired particles occupy the Andreev states inside this nodal line. The static solutions
are obtained by minimizing the quantity:
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FIGURE 5.3: The ground state configuration of the ferron. From left to
right, the local polarization, the strength of the pairing field, and the phase

of the pairing field are shown. The figure is taken from Ref. [88].

〈Ω〉 =
〈

H − ∑
σ={↑,↓}

µσNσ

〉
. (5.15)

The condition in Eq. (5.14) is only applied for a couple of iterations during the
minimization. Once the unpaired particles settle on the nodal line, the condition is not
needed anymore. Therefore, after a couple of iterations, it is turned off.

The ground state configuration of a 2D ferron is shown in Fig. 5.3. It can be seen
that the strength of the pairing field is completely recovered in the center. This was not
typical in a time–dependent scenario since there are always scattering events due to
excited phonons. As a result of the healing in the pairing field, the polarization in the
center of the nodal circle vanishes.

To investigate the relationship between the ferron’s size and spin–imbalance, a se-
ries of calculations with different global polarizations have been made. Using the im-
printing method given in Eq. (5.14), the system settles to a nodal radius in between
R1 = 3k−1

F and R2 = 25k−1
F . As shown above, the number of Andreev states inside

the ferron is governed by the object’s size. The increase in the spin–imbalance creates
the necessity for more Andreev states to be occupied. Therefore, an increase in the
spin–imbalance causes an expansion in the size of the ferron.

In panel a) of Fig. 5.4, it can be seen that for a small ferron, the pairing is not able
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FIGURE 5.4: A 1D cross–section of the simulation box. Panel a) and b)
show the local polarization and magnitude of the pairing field for different
global polarization values. Panel c) shows the radius of the nodal circle for
different global polarization values. The blue dots are the radii extracted
from the system. The dashed red line shows the linear equation, 2kFR + 1

where R = Rc + ξ.

to recover itself to its full strength, which causes non–zero polarization in the center.
Panel b) of the same figure shows that there are no unpaired particles in bulk. In the
case of a large ferron, all unpaired particles occupy the vicinity of the nodal circle.
Panel c) of Fig. 5.4 shows that there is a linear relationship between the number of the
unpaired particles and the radius of the nodal circle.

Panel c) of Fig. 5.4 compares the radius (R) obtained from numerical calculations
to simple analytic estimation. The angular momentum states inside the ferron obtain
values from −kFR to kFR. These states can be labeled by the magnetic quantum num-
ber, m, which they possess due to the quantization of the angular momentum. The
magnetic quantum numbers are defined as:

m =
〈Lz〉∫

d2r|v(r)|2
. (5.16)

During the Andreev scattering, the particle which is reflected as a hole conserves
its angular momentum. This would not be the case in a regular reflection where a
particle–hole conversion has no place. The magnetic quantum number, m, is a "good
quantum number" which is conserved during the retroreflection. Therefore, it can be
used to label the Andreev states inside the ferron.
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FIGURE 5.5: The angular momentum states inside the ferron (m). The
energy is shifted by δµ/(2|∆|). The vertical lines show the values of
−δµ/(2|∆|) and δµ/(2|∆|). The box size is 70k−1

F × 70k−1
F . The spin–

imbalance is δN = 31. The strength of the pairing field is |∆|/εF ≈ 0.44.

The magnetic quantum number obtains integer values from−kFR to kFR. In the 2D
case, the number of angular momentum states is 2kFR + 1. Because of the symmetry
of BdG equations, there is another branch of states for negative energies. In the spin–
imbalanced case, this symmetry is shifted by δµ/2 (see Fig. 5.5). This second branch
adds another contribution of 2kFR + 1 to the number of states. However, the occupa-
tion of Andreev states is |u↑|2 = |v↓|2 = 1/2 (see Eq. (2.85)). Therefore, each angular
momentum state is occupied by roughly half of a particle, meaning that the radius of
a 2D ferron scales with the number of excess particles in a linear fashion:

δN = 2kFR + 1 = 2Lmax + 1. (5.17)

Fig. 5.4 compares the radius obtained by numerical solution of BdG equations and
the analytical estimation made by Andreev approximation. It can be seen that the slope
of the data agrees with the analytical estimations.

In 3D case, the relation in Eq. (5.17) becomes quadratic since each angular momen-
tum eigenstate comes with a degeneracy of 2l + 1:
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δN =
Lmax

∑
Lz=0

(2Lz + 1) = (Lmax + 1)2 . (5.18)

5.3 Semi–classical analysis of ferron

In numerical calculations, the angular momentum states inside the ferron are degener-
ate. To lift the degeneracy, a small perturbation is implemented to the system after the
self–consistent solution is obtained. It is done by adding the additional term, ωL̂z to the
single–particle part of the BdG Hamiltonian: h↑↓(r) = −1

2∇2− µ̃↑↓− iωr×∇. Here, ω

stands for the radial frequency and is typically set to ω ≈ 0.01εF. Fig. 5.5 shows the so-
lutions of BdG Hamiltonian. Their magnetic quantum numbers label the energy levels.
The energies are shifted by δµ/2. Therefore, the eigenvalues are symmetrical around
E = 0. The continuum states, occupied by the Cooper pairs, are where |E| ≥ |∆|. It can
be seen that for energies below δµ/2, the solutions correspond to

(
u↓ v↑

)T eigenstates.
For energies above δµ/2, the solutions correspond to

(
u↑ v↓

)T eigenstates.
To verify the agreement between numerical calculations and semi–classical approx-

imation (the solutions of Eq. (5.9) and Eq. (5.10)), ferrons of different sizes ranging from
R = 10k−1

F to 20k−1
F are investigated. Therefore, according to Eq. (5.17) the smallest

ferron is obtained by the global spin–imbalance δN = 21 and the largest one with
δN = 41. The upper subfigure of Fig. 5.6 shows that the agreement between the nu-
merical results and semi–classical approximation is the best in the limit of the large
ferron. As a solution of Eq. (5.10), low angular momentum states have energies E = 0.
However, in the case of the small ferron, there is a discrepancy between Andreev ap-
proximation and BdG results. This discrepancy can be attributed to a tunneling effect
through the ferron interior, where the radius of the ferron is comparable to the co-
herence length. The effect of the tunneling can be examined in a similar way to the
Andreev problem examined in Chapter 2. Instead of considering three regions where
the phase is shifted only once, to reveal the tunneling effect, five regions must be con-
sidered where the phase is spatially shifted by π twice. Hence, it returns to its original
value. A schematic of the problem can be seen in Fig. 5.7. The wave function in the
regions 1 and 5 have the following form (see Eq. (2.74) and Eq. (2.75)):
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FIGURE 5.6: The positive branch of angular momenta and energies are
shown for different sizes of ferron. The dotted values represent the solu-
tions obtained from numerical calculations. The dashed lines show the
analytical estimations obtained from the Andreev approximation. The
vertical lines show the values of corresponding chemical potentials. The
system settings are the same as Fig. 5.5. Upper subfigure: The analyti-
cal solutions show discrepancy for small ferron sizes. Lower subfigure:
The discrepancy is treated by considering the tunneling events through

the ferron interior.
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FIGURE 5.7: A schematic of potential wells. d is the length of the junction
where the magnitude of the pairing field drops to zero. w is the width of

the ferron interior where the phase of the pairing field is shifted by π.

Ψ1(x) =

(
u1epx

v1epx

)
, (5.19)

Ψ5(x) =

(
u5e−px

v5e−px

)
, (5.20)

where p =

√
|∆|2−E2

kF
(see Eq. (2.72)). Eq. (2.70) shows that above equation can be

written as the following:

Ψ1(x) =

(
u1epx

u1epx+iθ

)
, (5.21)

Ψ5(x) =

(
u5e−px

v5e−px−iθ

)
, (5.22)

where cos θ = E/|∆|, and we drop eikFx term for simplicity. The regions 2 and 4
have the same form as Eq. (2.73):

Ψ2,4(x) =

 u2,4e i E
kF

x

v2,4e−i E
kF

x

. (5.23)

Finally, the region 3 has the form:
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Ψ3(x) =

(
u3aepx + u3be−px

−u3aepx+iθ − u3be−px−iθ

)
. (5.24)

Here, it should be noted that in region 3 the phase of the pairing field is shifted by
π. The wave functions must be continuous at the boundaries, therefore comparing the
regions 1 and 2:

u1 = u2,

v1 = v2 = u1eiθ. (5.25)

Comparing regions 2 and 3:

u2ei E
kF

d
= u3aepd + u3be−pd,

v2ei E
kF

d
= −u3aepd+iθ − u3be−pd−iθ. (5.26)

Above equations can be re–written using Eq. (5.25):

u1 = u3aepd−i E
kF

d
+ u3be−pd−i E

kF
d,

u1 = −u3aepd+i E
kF

d − u3be−pd+i
(

E
kF

d−2θ
)
, (5.27)

which yields to:

u3a = −u3be−2pd−iθ
cos

(
E
kF

d− θ
)

cos
(

E
kF

d
) . (5.28)

Comparing regions 3 and 4 gives:

u4ei E
kF

d(d+w)
= u3aep(d+w) + u3be−p(d+w),

v4ei E
kF

d(d+w)
= −u3aep(d+w)+iθ − u3be−p(d+w)−iθ, (5.29)

and the regions 4 and 5:
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u5e−p(2d+w) = u4ei E
kF
(2d+w),

u5e−p(2d+w)−iθ = v4e−i E
kF
(2d+w). (5.30)

After re–writing above equations using Eq. (5.29):

u3a = −u3be−2p(d+w)−iθ
cos

(
E
kF

d
)

cos
(

E
kF

d− θ
) . (5.31)

Comparing above equation with Eq. (5.28):

e−2pw =
cos2

(
E
kF

d− θ
)

cos2
(

E
kF

d
) ,

e−2pw =

(
E
|∆|

)2

+
2E
|∆|

√
1−

(
E
|∆|

)2

tan
(

E
kF

d
)

+

(
1−

(
E
|∆|

)2
)

tan2
(

E
kF

d
)

. (5.32)

For low energies, where E/∆� 1, above equation can be approximated to:

E
|∆| ≈ e−

|∆|w
kF

1
|∆|d
kF

+ 1
= e−

w
2ξ

1
d

2ξ + 1
. (5.33)

Above equation shows that the tunnelling events contribute to Eq. (5.13) with an
exponential factor which is non–negligible for small ferrons. As it is shown in Fig. 5.4,
a small ferron is accompanied with a lower pairing strength inside the ferron. Hence,
Eq. (5.33) can be modified for the case |∆in| 6= |∆out| as:

E
|∆| ≈ e

− |∆in|
2w

|∆out|kF
1

|∆out|d
kF

+ 1
, (5.34)

where ∆in is the magnitude of the pairing field inside the nodal circle and ∆out is the
magnitude of the pairing field in the bulk of the system. The effect of above correc-
tion term is visible on the lower subfigure of Fig. 5.6. It can be seen that the correction
term is effective for the case of small ferron. Thus, we can conclude that the Andreev
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FIGURE 5.8: The effect of the finite temperature in 2D static calculations.
As the temperature increases, the ferron gets smaller. Eventually, the
nodal structure is destroyed. Insets show the structure of the pairing field

with a color code same as Fig. 5.3.The spin–imbalance is δN = 31.

approximation is a valid analytic tool to examine the states inside the ferron. It gives
good agreement with the numerical results obtained by BdG equations, not only qual-
itatively but also quantitatively.

5.4 Ferron at finite temperature

As shown in Eq. (2.55), the finite temperature is only included in the calculation of
densities for numerical convenience; to smoothen the particle distribution. So far, the
value of the finite temperature has been T = 10−5Tc; therefore, it was negligible. The
value of the critical temperature, Tc, has been calculated using the well–known BCS
result, |∆(T = 0)|/Tc ≈ 1.76 (Eq. (2.51)). To check the effect of finite temperature
on ferron, a series of calculations with different temperatures has been performed. In
particular, initially, a ferron with a given size at T = 10−5Tc has been generated by
minimizing the expression in Eq. (5.15). In the following, the temperature is increased
by 0.01Tc, and the energy is minimized again. This procedure repeated until the ferron
is destroyed by thermal excitations.
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FIGURE 5.9: The 3D dynamic creation of ferron under finite temperature.
Panel a) shows the time evolution of local polarization in the center of the
object. Panel b) shows the pairing phase difference. The box size is L ≈ 41.
The amplitude of the potential was fixed at A0 = 2εF. The width of the
spin polarizing potential is σ = 4.71ξ. The vertical dashed line shows the
time where the external potential is turned off. The horizontal dashed line
is a guide to the eye pointing to the value of δϕ = π. Inset shows the time–
averaged polarization in the center of ferron for various temperatures. The

dashed blue line is a guide to the eye.

Fig. 5.8 shows that as the temperature increases, the size of the ferron slightly
shrinks. This is due to the pairing field’s response to the finite temperature (see Eq. (2.43)).
As the ferron’s size shrinks, it can be seen that the unpaired particles occupying rela-
tively high angular momentum states are expelled since those states do not exist any-
more. For high temperatures such as T/Tc = 0.20, the Andreev states move away
from the E = 0 line as a result of tunneling through a narrow ferron interior. When
the temperature has reached a particular value, such a small nodal circle becomes un-
stable and destroyed. Therefore, larger ferrons may endure higher temperatures. For
example, in the case of a larger ferron, where δN = 31, the nodal circle is destroyed
at T/Tc ≈ 0.21, while in the case of a smaller ferron, where δN = 21, the ferron is no
more at T/Tc ≈ 0.16.

It is also possible to dynamically create a ferron at finite temperature. The proce-
dure is essentially the same as in the previous chapter, i.e., using the time–dependent
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spin–selective potential. The results obtained within the ASLDA framework are pre-
sented in Fig. 5.9. It can be seen that the time–dependent calculations provide stable
ferrons up to temperatures near the critical temperature. The time–dependent cal-
culations involve applying an external potential that drives the system further from
equilibrium since it excites phonon modes interacting with the droplet. Increasing the
temperature in the system to values that are compatible with Tc drives the system out
of equilibrium. ASLDA framework does not involve few–body scattering processes
that can efficiently equilibrate the system back to thermal equilibrium. Therefore, the
results presented in Fig. 5.9 are valid only for a short time after the external potential
is turned off. For a long time evolution, the current ASLDA framework is insufficient
to make conclusions.



Chapter 6

Dynamic properties of the ferron

6.1 The critical velocity of the ferron

As shown in Chapter 4, it is possible to dynamically create a moving ferron by drag-
ging the external potential as in Eq. (4.8). According to the formula, the external po-
tential moves with the velocity, vdrag. After the external potential is turned off, the
resulting ferron moves with the velocity vfinal, which is lower than vdrag. By tracking
the center of the polarized sphere, it is possible to draw the trajectory of the ferron as a
function of time. Fig. 6.1 (upper subfigure) shows the extraction of vdrag and vfinal.

As the potential is dragged faster, the resulting velocity increases with it. It might
seem kind of obvious at first: Fig. 6.1 (lower subfigure) shows that for relatively low
velocities, the relation between vdrag and vfinal is linear. However, it can be seen that as
vdrag increases, vfinal eventually reaches a critical value beyond which ferron can not be
accelerated further. If vdrag is increased even more, it is observed that the ferron is de-
stroyed during its movement. There are two effects responsible for this: When the final
velocity gets closer to the critical value, the ferron undergoes deformation and finally
ceases to exist. Additionally, during the acceleration of the ferron, the external poten-
tial excites phonons in the system. These phonons scatter inside the simulation box
and interact with the ferron. While for low dragging velocities, ferron is stable against
these perturbations, for high velocities, the strength of the perturbation increases with
the number of excited phonons. Eventually, the ferron loses its stability. This effect
hastens the destruction of the ferron.

Fig. 6.1 also shows that a larger ferron admits higher critical velocity (see the cap-
tion). In order to study the critical velocity in detail, we turn to 2D static calculations
similar to the previous chapter. In static calculations, a uniform superflow with the
wave–vector q can be imposed to the system by setting the pairing field as:
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FIGURE 6.1: Upper subfigure: The position of the moving ferron inside
a box corresponding to lattice size 68 × 40 × 40 which corresponds to
53ξ × 31ξ × 31ξ. The width of the polarizing potential is σkF = 6 and its
amplitude is A0 = 2εF. The potential is switched on at tεF = 50 and com-
pletely removed at tεF = 150. Different data sets correspond to different
dragging velocities. Lower subfigure: Velocity of the ferron in the final
state as a function of the dragging velocity. The time–dependent spin–
selective potential is dragged along the x–axis during its application. The
horizontal dashed lines shows the "plateau" of the final velocity for var-
ious sizes of ferrons corresponding to: σkF = 8, σkF = 6, σkF = 4 from
top to bottom, where σ is the width of the Gaussian potential. Inset shows
the absolute value of the pairing field in the left column, while in the right
column, the phase of the pairing field is shown. The images are taken after
the external potential is turned off while the ferron is moving. All three
configurations correspond to vdrag/vF = 0.06. The figure is taken from

Ref. [89].
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∆(r)→ ∆(r)e2iq·r = geff ∑
n

v?n,↑(r)un,↓(r). (6.1)

Therefore the BdG Hamiltonian with the presence of superflow is expressed as:(
−∇2

2 − µ↑↓ ±∆(r)e2iq·r

±∆(r)e−2iq·r ∇2

2 + µ↓↑

)(
un,↑↓(r)
vn,↓↑(r)

)
= En

(
un,↑↓(r)
vn,↓↑(r)

)
. (6.2)

It is possible to change the reference frame using the following transformation:

un,↑↓(r) = ũn,↑↓(r)eiq·r,

vn,↑↓(r) = ṽn,↑↓(r)e−iq·r. (6.3)

Eq. (6.2) can be written in terms of new coherence factors ũ and ṽ:

 − (∇+iq)2

2 − µ↑↓ ±∆(r)

±∆(r) (∇+iq)2

2 + µ↓↑

( ũn,↑↓(r)
ṽn,↓↑(r)

)
= En

(
ũn,↑↓(r)
ṽn,↓↑(r)

)
. (6.4)

In the presence of both superflow and the ferron, Eq. (6.2) describes a standing fer-
ron in an environment of superflow. On the other hand, the pairing field does not
oscillate in Eq. (6.4); therefore, there is no superflow. But, the single–particle part in-
volves a velocity term which corresponds to a ferron moving with a velocity q over a
standing superfluid background.

The particle currents are defined as:

j↑↓(r) =
1
2i ∑

n

[
vn,↑↓(r)∇v?n,↑↓(r)− v?n,↑↓(r)∇vn,↑↓(r)

]
, (6.5)

and the difference between currents corresponding to wavefunctions {u, v} and
{ũ, ṽ}:

j↑↓(r)− j̃↑↓(r) = qρ↑↓(r), (6.6)

where ρ↑↓(r) = ∑n |vn,↑↓(r)|2 is the particle density. Eq. (6.6) shows that two ref-
erence frames move with respect to each other with the velocity q. Therefore, it is
possible to create a moving ferron solution by setting a superflow in the system.
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FIGURE 6.2: Structure of the spectrum of Andreev states exposed to differ-
ent strengths of superflow. Left subfigure: Magnetic quantum numbers
m corresponding to Andreev states are shown for two velocities of the su-
perflow: q/vF = 0.01 (filled circles) and q/vF = 0.05 (empty diamonds),
where vF denotes Fermi velocity. Right subfigure: The expectation value
of the momentum operator component, parallel to the direction of the su-
perflow is shown for Andreev states. The quasiparticle energies have been
shifted by 1

2 δµ and therefore the plots on both subfigures possess symme-
try with respect to E = 0. The shifted energy values corresponding to
± 1

2 δµ have been denoted by vertical dashed lines. The spin imbalance
corresponds to δN = 31 (R ≈ 6.2ξ) and the strength of the pairing field

|∆|/εF = 0.44. The figure is taken from Ref. [89].
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The phase difference in the pairing fields between the bulk and the ferron interior
is altered in the presence of superflow. It does not have the fixed value δϕ = π as in
the standing case. In the case of the moving ferron, the phase difference between the
ferron interior and the bulk depends on the orientation of the particle trajectory and
the direction of the superflow: δϕ(r) = π± 2q · r. Therefore, two extremum values for
the phase difference are: δϕ± = π ± 2qd. Solving the Andreev equation (Eq. (5.1)) for
this two cases under the low–energy assumption (E� |∆|) gives:

E+ =
δµ

2
± qkF

ξ
d +

1
4

,

E− = −δµ

2
± qkF

ξ
d +

1
4

. (6.7)

The above equations show that the energies E± undergoes an additional split which
scales the velocity of the superflow. The Andreev states forming the ferron obtain
a non–zero expectation value of the linear momentum operator, 〈px〉 as a result of the
superflow. Fig. 6.2 shows that the states with low angular momentum are affected first.
As the velocity increases, the states with higher angular momentum start to obtain a
non–zero 〈px〉 and contribute to the splitting in Eq. (6.7). Eventually, the width of
the split reaches δµ, meaning that the lowest energy Andreev state has zero energy
with a non–zero 〈px〉. This leads to the instability and decay of the ferron. Fig. 6.2
(right subfigure) shows the split of the states with non–zero 〈px〉. Additionally, Fig. 6.3

shows that dependence of the slope of the split, s =
(

ξ
d +

1
4

)−1
to the size of the ferron

is negligible. Therefore, the critical velocity, vcrit, is dictated by the maximum width of
the split in Eq. (6.7) which is δµ. In the previous chapter, it has been shown that there
is a linear relationship between the size of the ferron and the spin–imbalance. A larger
spin–imbalance means a larger difference in chemical potentials. So, the value of the
critical velocity would be higher for a larger ferron in agreement with Fig. 6.1.

Another parameter that affects the critical velocity is the magnitude of the pairing
field. For a given size of ferron, a lower pairing strength means a larger coherence
length, which brings the tunneling effect discussed in the previous chapter. As shown
in Fig. 5.6, the tunneling through the ferron interior removes the degeneracy at E = 0,
hence creates a shift in the spectrum of states. Because of this shift, the split caused
by finite q is enhanced. For a weakly paired system, the split width reaches δµ for
smaller values of q compared to a system with stronger pairing. Fig. 6.4 addresses the
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FIGURE 6.3: The expectation value of the momentum operator for dif-
ferent sizes of the ferron. All three sizes are subjected to the superflow

q = 0.03vF. The figure is taken from [89].

dependence of critical velocity both on the size of the ferron and the pairing strength.
As it can be seen, a large ferron in a strong pairing regime admits the highest critical
velocity. The deviations are attributed to the deformation of the ferron for velocities
close to the critical velocity (see inset of Fig. 6.4).

The ferron in the vicinity of vortex

The study of the critical velocity of ferron answers the possibility of a vortex–ferron
coexistence. The time–dependent 3D simulations with the presence of a vortex are
conducted at the unitary limit with the lattice size of 80× 80× 32, which corresponds
to 62ξ × 62ξ × 25ξ with kF ≈ 1. A straight vortex line along z–direction is obtained by
imposing on the static solution the following structure of the pairing field: ∆(x, y) =

|∆(x, y)|e(i tan−1(y/x)). Next, the ferron is generated dynamically by applying the spin
selective potential (Eq. (4.8)), with vdrag = 0 and x0 controls distance of the ferron from
the vortex core. Since the currents generated by a vortex decrease linearly further from
its center [59], the ferron should be placed carefully. A closer position of the ferron to
a vortex brings the destruction of the ferron. Fig. 6.5 shows a dynamically generated
ferron of radius rkF = 6 in the distance dkF = 24 from the core. At the point where
the ferron is closest to the vortex, the induced velocity v = h̄

2mr ≈ 0.028vF is higher
than the critical velocity for this case vcrit ≈ 0.024vF (see Fig. 6.1). Consequently, the
snapshots reveal stages of ferron decay. Since the critical velocity increases with the
ferron size at first glance, one may attempt to increase the size of the ferron instead of
moving it away. However, the currents generated by the vortex are not uniform in the
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FIGURE 6.4: The ferron critical velocity as a function of the magnitude
of the pairing field |∆|/εF and the spin imbalance δN. Inset shows an
example of two different sizes of ferron having the same critical velocity
where the smaller ferron is deformed. The figure is taken from Ref. [89].

radial direction. Therefore, for a larger ferron, the effect caused by the non–uniformity
of the superflow becomes more crucial.

6.2 Effective mass of the ferron

Examination of the ferron under superflow provokes the study of its inertia. The effec-
tive mass of the ferron helps quantify the force that needs to be acted on to accelerate
or stop it. Therefore, it is a necessary step to create a model involving many ferrons.

In Eq. (6.4) a transformation from the standing reference frame to a frame moving
with the superflow velocity q is defined. According to this moving reference frame,
in the case of a uniform system, where there is no impurity, such as the ferron, the
particle current would be zero. However, with the presence of the standing impurity,
the currents are generated as superflow’s response to the mass of the impurity:

Meff = lim
q→0
R(q) = lim

q→0

|
∫

d3r(j↑ + j↓)|
|q| . (6.8)

The effective mass is composed of two terms:
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FIGURE 6.5: Snapshots showing the attempt to create a stable ferron solu-
tion in the presence of the vortex. The time–dependent potential to gener-
ate the ferron is turned off at tεF = 150. The vortex, with the core located
in the center, creates currents rotating counter–clockwise. It is visible that
ferron is destroyed because of these currents. The polarization inside the
ferron is pushed to the boundary of the system. The figure is taken from

Ref. [89].
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Meff = Mpol + δM. (6.9)

Here, the term Mpol represents the contribution coming from the unpaired particles
constituting the ferron, Mpol = δN. By recalling the results in the previous chapter
(Eq. (5.17)), one may conclude that the contribution coming from the spin–imbalanced
particles to the effective mass scales with the radius of the ferron, Mpol ∝ R in 2D, and
Mpol ∝ R2 in 3D.

The term δM represents the modification of the superfluid environment due to the
presence of the impurity. In order to study this term, we turn to irrotational hydrody-
namics:

∇× vs = 0, (6.10)

where vs is the average velocity of the superflow. Since the rotation of a gradient
is zero, ∇× (∇ ·Φ) = 0, the velocity vector can be expressed as the following scalar
potential:

vs = ∇Φ. (6.11)

The general continuity equation which enforces the particle conservation is:

∂ns

∂t
+∇Js = 0, (6.12)

where ns is the condensate particle density and Js = nsvs is defined as the super-
current. Since, the density does not change with time, ∂ns

∂t = 0, Eq. (6.12) yields to:

∇ · vs = 0. (6.13)

Combining above equation with Eq. (6.11) gives the Laplace equation for irrota-
tional flow:

∇2Φ = 0. (6.14)

In the case of a circular impurity with a radius R immersed in a superfluid environ-
ment, the flow is divided into two parts:

Φ(r) =

{
Φin(r), r < R,
Φout(r), R < r,

(6.15)
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where
lim
r→∞

Φout(r) = 0. (6.16)

Therefore, for r < R we look for solutions in 2D polar coordinates, in the form
of Φin(r) = Ar cos θ, and for R < r we look for solutions in the form of Φout(r) =

B cos θ/r, with the following boundary conditions:

Φin(R) = Φout(R),

(nin − nout)v · n = nin
∂Φ
∂r
|r=R − nout

∂Φ
∂r
|r=R, (6.17)

where n is the unit vector normal to the boundary. Using the boundary conditions,
the solutions of Eq. (6.14) are:

Φin(r) =

(
nin − nout

nin + nout

)
v · r, (6.18)

Φout(r) =

(
nin − nout

nin + nout

)
R2

r2 v · r. (6.19)

Therefore, the energy stored in the superflow is:

E =
1
2

[∫
r<R

nin (∇Φin(r))
2 d2r +

∫
r>R

nout (∇Φout(r))
2 d2r

]
,

E =
1
2

πR2 (nin − nout)2

nin + nout
v2. (6.20)

Above equation describes the energy caused by the modification of the superfluid
background. Therefore, the contribution to the effective mass coming from this modi-
fication is:

δM = πR2 (nin − nout)2

nin + nout
. (6.21)

It can be seen that the above term scales with the area of the impurity and it is
equal to zero when nin = nout. As the ferron’s size gets larger, (R� ξ), the densities
inside and outside of the impurity becomes similar (|nin − nout| → 0). This means, in
the case of a large ferron, the modification of the superfluid background is suppressed
and Mpol term dominates the δM term: Meff ≈ Mpol. However, in the case of a small
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FIGURE 6.6: The response function in Eq. (6.8) as a function of the su-
perflow velocity q. Symbols correspond to numerical calculations. Lines
are obtained as a result of interpolation. The value of effective mass is
extracted in the limit of q → 0 and denoted by symbols. The results for
two values of the pairing field are shown: ∆/εF = 0.365 (panel a) and for
∆/εF = 0.552 (panel b). The lattice size is (70k−1

F )2 where kF ≈ 1. The
figure is taken from Ref. [89].

ferron, the modification term δM becomes important since it scales with the area of the
impurity, whereas the Mpol term scales with the circumference. In 3D systems, these
arguments stay valid. Only, this time the Mpol term scales with the surface instead of
circumference and δM scales with the volume instead of the surface.

An additional effect would be the strength of the pairing field. For a given size
of the ferron, the density difference |nin − nout| is larger for a ferron surrounded by a
weaker pairing field. This is a result of the tunneling effect discussed previously; in the
weak pairing regime, the tunneling effect is more pronounced. Therefore, for a large
ferron in the strong pairing regime, the δM term may become negligible. However,
for the same ferron, but generated in the weak pairing regime, δM becomes crucial in
order to estimate its effective mass.

In order to study the effective mass quantitatively, the BdG Hamiltonian in Eq. (6.4)
is solved numerically for various pairing strengths |∆|/εF ranging from 0.36 to 0.55.
A series of superflow corresponding to the velocity of q/vF = 0.01, 0.02, 0.03 and 0.04
are introduced and the response function is obtained by using Eq. (6.8). Finally, the
results corresponding to different q values are extrapolated to the q → 0 limit using
cubic Hermite interpolation. In Fig. 6.6 two examples for different pairing strengths
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are presented. As shown in the above section, a ferron in a system with weaker pairing
strength has lower critical velocity. Consequently, in panel a) of Fig. 6.6 the response
function shows a stronger dependence on q than in the strong pairing limit shown in
panel b). This is due to the fact that in the former case, the critical velocity is lower, and
the shape of ferron is affected already at relatively small q values. The calculations have
been performed in a box with lattice size 70k−1

F × 70k−1
F where kF↑↓ ≈ 1. The stability

of the results are tested with respect to the size of the box by evaluating effective mass
in a box with lattice size 1002 and found an agreement with accuracy better than 1%.

Fig. 6.7 (left subfigure) shows the effective mass for different sizes of the ferron
under different pairing regimes. It can be seen that the above argument on the modi-
fication of the superfluid environment in the case of a small ferron or weak pairing is
proved to be important. For the case of a large ferron in the strong coupling regime
the effective mass is almost equal to the spin–imbalance, Meff ≈ Mpol. However, the
ferron becomes heavier towards the weak coupling regime.

Fig. 6.7 (right subfigure) shows the comparison of two energies obtained by utiliz-
ing the calculated E f (q) = 1

2 Meffq2 and the excitation energy of the system caused by
the velocity field, Eex(q) = E(q)− E(0). The latter energy values are calculated by the
integration of the BdG functional (see Eq. (2.59)). It can be seen that two energies E f (q)
and Eex(q) are almost the same for low velocities. For high velocities, the ferron which
is immersed in the weaker pairing regime gets close to its critical velocity therefore a
discrepancy appears.
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FIGURE 6.7: Left subfigure: The effective mass Meff as a function of the
magnitude of the pairing field |∆|/εF and the spin imbalance δ. In all
cases the total number of particles in the simulation box is N = N↑ +
N↓ = 770 and the Fermi momentum kF =

√
2εF ≈ 1. The values of δN =

21, 41 correspond to the ferron radii R ≈ 4.0ξ and R ≈ 8.3ξ, respectively,
where ξ = 1

kF

εF
|∆| . Right subfigure: The excitation energy of the system

Eex(q) as a function of velocity q obtained in BdG calculations (lines). The
kinetic energy of the ferron Ef(q) obtained using the extracted effective
mass (points). Both energies are shown in units of non–interacting Fermi
gas Effg. The spin–imbalance in the system is δN = 41. The lattice size is

(70k−1
F )2 where kF ≈ 1. The figure is taken from Ref. [89].





Chapter 7

Conclusions and outlook

In this thesis, a novel type of meta–stable excitation mode in the ultracold Fermi gas is
studied. The droplet can be created dynamically by locally breaking the Cooper pairs
with a spin–selective external potential. The local mismatch in the Fermi levels causes
spatial modulation in the pairing field and creates a nodal region where the pairing is
effectively suppressed while changing its sign. This nodal circle contains the Andreev
levels. The nodal region is stabilized by the unpaired majority particles and by the
pairing field in both ends of the nodal region, acting as an effective potential barrier. It
is shown that when the external potential is turned off, the structure is stable through-
out the time interval that can be reliably observed within the numerical scheme.

The creation and stability of the ferron are studied as a function of the lattice size,
size, strength, and adiabaticity of the external potential. It can be seen from the above
results that as long as the pairing field locally changes its sign and the superfluid en-
vironment is unharmed, there is no mechanism for the ferron decay within the mean–
field description.

It is demonstrated that in the case of an asymmetric external potential, the ferron
slowly reshapes into a symmetric structure once the external potential is turned off. It
is also possible to create concentric ferrons when the spin–polarization is large enough.
However, this process could be rather violent and may create phonon excitations which
in principle may affect the stability of the droplet. Different scenarios of ferron colli-
sions show that these structures are robust to collisions. They merge if they are made
of the same spin component and annihilate each other in the case of opposite spins.

To test the soundness of the results, different numerical frameworks and different
coupling regimes are considered. It is showed that the ferron creation is not a trade-
mark of a particular density functional. Although, in principle, it is possible to obtain
the ferron as long as the pairing persists in the system, for a weak–coupling regime, the
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external potential may destroy the superfluidity. Therefore, the unitary regime offers a
more stable environment to study ferron.

The inner structure of the ferron is composed of Andreev bound states where the
unpaired particles localized in sub–gap energies without being expelled from the su-
perfluid. By inspection of these states, the size of the ferron can be related to the total
number of particles it has. Moreover, the mechanism behind its critical velocity can be
understood from the inspection of the Andreev bound states. Namely, as the ferron
moves faster, more states obtain a non–zero linear momentum, eventually resulting in
instability. The critical velocity depends on the chemical potential difference between
the spin components and the strength of the background pairing field. The critical
velocity is confirmed in time–dependent simulations. It is impossible to accelerate the
ferron beyond a certain velocity. Moreover, the ferron is studied in the vicinity of a vor-
tex core. Although technically it is possible to have a ferron and a vortex in the same
system, they should be placed far away from each other. Otherwise, the superflow
created by the vortex exceeds the critical velocity and destroys the ferron.

The effective mass of the ferron is studied to describe the motion of the ferron.
The effective mass has two contributions. The main contribution is the object’s size,
but there turned out to be a correction coming from the modification of the surround-
ing superfluid environment, which is suppressed in the large ferron or a strong cou-
pling limit. However, it becomes noticeable for small ferrons or weak coupling regimes
where the tunneling across the ferron becomes effective.

The finite temperature studies show that there is a limit to the temperature in which
the ferron may exist. As the temperature increases, the pairing field rearranges itself,
resulting in a smaller nodal region and expulsion of some of the unpaired particles.
At a certain temperature, the ferron reaches a size which the tunneling effects across
the ferron interior causes its destruction. This temperature lies lower than the critical
temperature for the appearance of the pairing field. However, it is showed that if the
size of the ferron is large enough, it would be experimentally possible to create such
an environment where it can be obtained.

The ferron can be considered as a Larkin–Ovchinnikov droplet because of the struc-
ture of the pairing field it is associated with. Additionally, because of the same reason-
ing, a moving ferron may correspond to a Fulde–Ferrel droplet. Since the FFLO phase
is unconfirmed, the ferron may offer an easier experimental procedure and a strong
implication of this much–anticipated phase. Hence, an important future focus would
be studying realistic scenarios of ferron creation, paving the way for its realization.
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Moreover, the fate of the ferron, after the supercurrents destroy it, is also left as an
open question and may lead to other novel exotic configurations. Finally, scenarios
that involve many ferrons and their dynamics can be studied based on the outcomes
of this thesis.
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